FieldRotation.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.geometry.euclidean.threed;
- import java.io.Serializable;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.geometry.LocalizedGeometryFormats;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.FieldSinCos;
- import org.hipparchus.util.MathArrays;
- /**
- * This class is a re-implementation of {@link Rotation} using {@link CalculusFieldElement}.
- * <p>Instance of this class are guaranteed to be immutable.</p>
- *
- * @param <T> the type of the field elements
- * @see FieldVector3D
- * @see RotationOrder
- */
- public class FieldRotation<T extends CalculusFieldElement<T>> implements Serializable {
- /** Serializable version identifier */
- private static final long serialVersionUID = 20130224L;
- /** Scalar coordinate of the quaternion. */
- private final T q0;
- /** First coordinate of the vectorial part of the quaternion. */
- private final T q1;
- /** Second coordinate of the vectorial part of the quaternion. */
- private final T q2;
- /** Third coordinate of the vectorial part of the quaternion. */
- private final T q3;
- /** Build a rotation from the quaternion coordinates.
- * <p>A rotation can be built from a <em>normalized</em> quaternion,
- * i.e. a quaternion for which q<sub>0</sub><sup>2</sup> +
- * q<sub>1</sub><sup>2</sup> + q<sub>2</sub><sup>2</sup> +
- * q<sub>3</sub><sup>2</sup> = 1. If the quaternion is not normalized,
- * the constructor can normalize it in a preprocessing step.</p>
- * <p>Note that some conventions put the scalar part of the quaternion
- * as the 4<sup>th</sup> component and the vector part as the first three
- * components. This is <em>not</em> our convention. We put the scalar part
- * as the first component.</p>
- * @param q0 scalar part of the quaternion
- * @param q1 first coordinate of the vectorial part of the quaternion
- * @param q2 second coordinate of the vectorial part of the quaternion
- * @param q3 third coordinate of the vectorial part of the quaternion
- * @param needsNormalization if true, the coordinates are considered
- * not to be normalized, a normalization preprocessing step is performed
- * before using them
- */
- public FieldRotation(final T q0, final T q1, final T q2, final T q3, final boolean needsNormalization) {
- if (needsNormalization) {
- // normalization preprocessing
- final T inv =
- q0.square().add(q1.square()).add(q2.square()).add(q3.square()).sqrt().reciprocal();
- this.q0 = inv.multiply(q0);
- this.q1 = inv.multiply(q1);
- this.q2 = inv.multiply(q2);
- this.q3 = inv.multiply(q3);
- } else {
- this.q0 = q0;
- this.q1 = q1;
- this.q2 = q2;
- this.q3 = q3;
- }
- }
- /** Build a rotation from an axis and an angle.
- * <p>We use the convention that angles are oriented according to
- * the effect of the rotation on vectors around the axis. That means
- * that if (i, j, k) is a direct frame and if we first provide +k as
- * the axis and π/2 as the angle to this constructor, and then
- * {@link #applyTo(FieldVector3D) apply} the instance to +i, we will get
- * +j.</p>
- * <p>Another way to represent our convention is to say that a rotation
- * of angle θ about the unit vector (x, y, z) is the same as the
- * rotation build from quaternion components { cos(-θ/2),
- * x * sin(-θ/2), y * sin(-θ/2), z * sin(-θ/2) }.
- * Note the minus sign on the angle!</p>
- * <p>On the one hand this convention is consistent with a vectorial
- * perspective (moving vectors in fixed frames), on the other hand it
- * is different from conventions with a frame perspective (fixed vectors
- * viewed from different frames) like the ones used for example in spacecraft
- * attitude community or in the graphics community.</p>
- * @param axis axis around which to rotate
- * @param angle rotation angle.
- * @param convention convention to use for the semantics of the angle
- * @exception MathIllegalArgumentException if the axis norm is zero
- */
- public FieldRotation(final FieldVector3D<T> axis, final T angle, final RotationConvention convention)
- throws MathIllegalArgumentException {
- final T norm = axis.getNorm();
- if (norm.getReal() == 0) {
- throw new MathIllegalArgumentException(LocalizedGeometryFormats.ZERO_NORM_FOR_ROTATION_AXIS);
- }
- final T halfAngle = angle.multiply(convention == RotationConvention.VECTOR_OPERATOR ? -0.5 : 0.5);
- final FieldSinCos<T> sinCos = FastMath.sinCos(halfAngle);
- final T coeff = sinCos.sin().divide(norm);
- q0 = sinCos.cos();
- q1 = coeff.multiply(axis.getX());
- q2 = coeff.multiply(axis.getY());
- q3 = coeff.multiply(axis.getZ());
- }
- /** Build a {@link FieldRotation} from a {@link Rotation}.
- * @param field field for the components
- * @param r rotation to convert
- */
- public FieldRotation(final Field<T> field, final Rotation r) {
- this.q0 = field.getZero().add(r.getQ0());
- this.q1 = field.getZero().add(r.getQ1());
- this.q2 = field.getZero().add(r.getQ2());
- this.q3 = field.getZero().add(r.getQ3());
- }
- /** Build a rotation from a 3X3 matrix.
- * <p>Rotation matrices are orthogonal matrices, i.e. unit matrices
- * (which are matrices for which m.m<sup>T</sup> = I) with real
- * coefficients. The module of the determinant of unit matrices is
- * 1, among the orthogonal 3X3 matrices, only the ones having a
- * positive determinant (+1) are rotation matrices.</p>
- * <p>When a rotation is defined by a matrix with truncated values
- * (typically when it is extracted from a technical sheet where only
- * four to five significant digits are available), the matrix is not
- * orthogonal anymore. This constructor handles this case
- * transparently by using a copy of the given matrix and applying a
- * correction to the copy in order to perfect its orthogonality. If
- * the Frobenius norm of the correction needed is above the given
- * threshold, then the matrix is considered to be too far from a
- * true rotation matrix and an exception is thrown.</p>
- * @param m rotation matrix
- * @param threshold convergence threshold for the iterative
- * orthogonality correction (convergence is reached when the
- * difference between two steps of the Frobenius norm of the
- * correction is below this threshold)
- * @exception MathIllegalArgumentException if the matrix is not a 3X3
- * matrix, or if it cannot be transformed into an orthogonal matrix
- * with the given threshold, or if the determinant of the resulting
- * orthogonal matrix is negative
- */
- public FieldRotation(final T[][] m, final double threshold)
- throws MathIllegalArgumentException {
- // dimension check
- if ((m.length != 3) || (m[0].length != 3) ||
- (m[1].length != 3) || (m[2].length != 3)) {
- throw new MathIllegalArgumentException(LocalizedGeometryFormats.ROTATION_MATRIX_DIMENSIONS,
- m.length, m[0].length);
- }
- // compute a "close" orthogonal matrix
- final T[][] ort = orthogonalizeMatrix(m, threshold);
- // check the sign of the determinant
- final T d0 = ort[1][1].multiply(ort[2][2]).subtract(ort[2][1].multiply(ort[1][2]));
- final T d1 = ort[0][1].multiply(ort[2][2]).subtract(ort[2][1].multiply(ort[0][2]));
- final T d2 = ort[0][1].multiply(ort[1][2]).subtract(ort[1][1].multiply(ort[0][2]));
- final T det =
- ort[0][0].multiply(d0).subtract(ort[1][0].multiply(d1)).add(ort[2][0].multiply(d2));
- if (det.getReal() < 0.0) {
- throw new MathIllegalArgumentException(LocalizedGeometryFormats.CLOSEST_ORTHOGONAL_MATRIX_HAS_NEGATIVE_DETERMINANT,
- det);
- }
- final T[] quat = mat2quat(ort);
- q0 = quat[0];
- q1 = quat[1];
- q2 = quat[2];
- q3 = quat[3];
- }
- /** Build the rotation that transforms a pair of vectors into another pair.
- * <p>Except for possible scale factors, if the instance were applied to
- * the pair (u<sub>1</sub>, u<sub>2</sub>) it will produce the pair
- * (v<sub>1</sub>, v<sub>2</sub>).</p>
- * <p>If the angular separation between u<sub>1</sub> and u<sub>2</sub> is
- * not the same as the angular separation between v<sub>1</sub> and
- * v<sub>2</sub>, then a corrected v'<sub>2</sub> will be used rather than
- * v<sub>2</sub>, the corrected vector will be in the (±v<sub>1</sub>,
- * +v<sub>2</sub>) half-plane.</p>
- * @param u1 first vector of the origin pair
- * @param u2 second vector of the origin pair
- * @param v1 desired image of u1 by the rotation
- * @param v2 desired image of u2 by the rotation
- * @exception MathRuntimeException if the norm of one of the vectors is zero,
- * or if one of the pair is degenerated (i.e. the vectors of the pair are collinear)
- */
- public FieldRotation(FieldVector3D<T> u1, FieldVector3D<T> u2, FieldVector3D<T> v1, FieldVector3D<T> v2)
- throws MathRuntimeException {
- // build orthonormalized base from u1, u2
- // this fails when vectors are null or collinear, which is forbidden to define a rotation
- final FieldVector3D<T> u3 = FieldVector3D.crossProduct(u1, u2).normalize();
- u2 = FieldVector3D.crossProduct(u3, u1).normalize();
- u1 = u1.normalize();
- // build an orthonormalized base from v1, v2
- // this fails when vectors are null or collinear, which is forbidden to define a rotation
- final FieldVector3D<T> v3 = FieldVector3D.crossProduct(v1, v2).normalize();
- v2 = FieldVector3D.crossProduct(v3, v1).normalize();
- v1 = v1.normalize();
- // buid a matrix transforming the first base into the second one
- final T[][] array = MathArrays.buildArray(u1.getX().getField(), 3, 3);
- array[0][0] = u1.getX().multiply(v1.getX()).add(u2.getX().multiply(v2.getX())).add(u3.getX().multiply(v3.getX()));
- array[0][1] = u1.getY().multiply(v1.getX()).add(u2.getY().multiply(v2.getX())).add(u3.getY().multiply(v3.getX()));
- array[0][2] = u1.getZ().multiply(v1.getX()).add(u2.getZ().multiply(v2.getX())).add(u3.getZ().multiply(v3.getX()));
- array[1][0] = u1.getX().multiply(v1.getY()).add(u2.getX().multiply(v2.getY())).add(u3.getX().multiply(v3.getY()));
- array[1][1] = u1.getY().multiply(v1.getY()).add(u2.getY().multiply(v2.getY())).add(u3.getY().multiply(v3.getY()));
- array[1][2] = u1.getZ().multiply(v1.getY()).add(u2.getZ().multiply(v2.getY())).add(u3.getZ().multiply(v3.getY()));
- array[2][0] = u1.getX().multiply(v1.getZ()).add(u2.getX().multiply(v2.getZ())).add(u3.getX().multiply(v3.getZ()));
- array[2][1] = u1.getY().multiply(v1.getZ()).add(u2.getY().multiply(v2.getZ())).add(u3.getY().multiply(v3.getZ()));
- array[2][2] = u1.getZ().multiply(v1.getZ()).add(u2.getZ().multiply(v2.getZ())).add(u3.getZ().multiply(v3.getZ()));
- T[] quat = mat2quat(array);
- q0 = quat[0];
- q1 = quat[1];
- q2 = quat[2];
- q3 = quat[3];
- }
- /** Build one of the rotations that transform one vector into another one.
- * <p>Except for a possible scale factor, if the instance were
- * applied to the vector u it will produce the vector v. There is an
- * infinite number of such rotations, this constructor choose the
- * one with the smallest associated angle (i.e. the one whose axis
- * is orthogonal to the (u, v) plane). If u and v are collinear, an
- * arbitrary rotation axis is chosen.</p>
- * @param u origin vector
- * @param v desired image of u by the rotation
- * @exception MathRuntimeException if the norm of one of the vectors is zero
- */
- public FieldRotation(final FieldVector3D<T> u, final FieldVector3D<T> v) throws MathRuntimeException {
- final T normProduct = u.getNorm().multiply(v.getNorm());
- if (normProduct.getReal() == 0) {
- throw new MathRuntimeException(LocalizedGeometryFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
- }
- final T dot = FieldVector3D.dotProduct(u, v);
- if (dot.getReal() < ((2.0e-15 - 1.0) * normProduct.getReal())) {
- // special case u = -v: we select a PI angle rotation around
- // an arbitrary vector orthogonal to u
- final FieldVector3D<T> w = u.orthogonal();
- q0 = normProduct.getField().getZero();
- q1 = w.getX().negate();
- q2 = w.getY().negate();
- q3 = w.getZ().negate();
- } else {
- // general case: (u, v) defines a plane, we select
- // the shortest possible rotation: axis orthogonal to this plane
- q0 = dot.divide(normProduct).add(1.0).multiply(0.5).sqrt();
- final T coeff = q0.multiply(normProduct).multiply(2.0).reciprocal();
- final FieldVector3D<T> q = FieldVector3D.crossProduct(v, u);
- q1 = coeff.multiply(q.getX());
- q2 = coeff.multiply(q.getY());
- q3 = coeff.multiply(q.getZ());
- }
- }
- /** Build a rotation from three Cardan or Euler elementary rotations.
- * <p>Cardan rotations are three successive rotations around the
- * canonical axes X, Y and Z, each axis being used once. There are
- * 6 such sets of rotations (XYZ, XZY, YXZ, YZX, ZXY and ZYX). Euler
- * rotations are three successive rotations around the canonical
- * axes X, Y and Z, the first and last rotations being around the
- * same axis. There are 6 such sets of rotations (XYX, XZX, YXY,
- * YZY, ZXZ and ZYZ), the most popular one being ZXZ.</p>
- * <p>Beware that many people routinely use the term Euler angles even
- * for what really are Cardan angles (this confusion is especially
- * widespread in the aerospace business where Roll, Pitch and Yaw angles
- * are often wrongly tagged as Euler angles).</p>
- * @param order order of rotations to compose, from left to right
- * (i.e. we will use {@code r1.compose(r2.compose(r3, convention), convention)})
- * @param convention convention to use for the semantics of the angle
- * @param alpha1 angle of the first elementary rotation
- * @param alpha2 angle of the second elementary rotation
- * @param alpha3 angle of the third elementary rotation
- */
- public FieldRotation(final RotationOrder order, final RotationConvention convention,
- final T alpha1, final T alpha2, final T alpha3) {
- final Field<T> field = alpha1.getField();
- final FieldRotation<T> r1 = new FieldRotation<>(new FieldVector3D<>(field, order.getA1()), alpha1, convention);
- final FieldRotation<T> r2 = new FieldRotation<>(new FieldVector3D<>(field, order.getA2()), alpha2, convention);
- final FieldRotation<T> r3 = new FieldRotation<>(new FieldVector3D<>(field, order.getA3()), alpha3, convention);
- final FieldRotation<T> composed = r1.compose(r2.compose(r3, convention), convention);
- q0 = composed.q0;
- q1 = composed.q1;
- q2 = composed.q2;
- q3 = composed.q3;
- }
- /** Get identity rotation.
- * @param field field for the components
- * @return a new rotation
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldRotation<T> getIdentity(final Field<T> field) {
- return new FieldRotation<>(field, Rotation.IDENTITY);
- }
- /** Convert an orthogonal rotation matrix to a quaternion.
- * @param ort orthogonal rotation matrix
- * @return quaternion corresponding to the matrix
- */
- private T[] mat2quat(final T[][] ort) {
- final T[] quat = MathArrays.buildArray(ort[0][0].getField(), 4);
- // There are different ways to compute the quaternions elements
- // from the matrix. They all involve computing one element from
- // the diagonal of the matrix, and computing the three other ones
- // using a formula involving a division by the first element,
- // which unfortunately can be zero. Since the norm of the
- // quaternion is 1, we know at least one element has an absolute
- // value greater or equal to 0.5, so it is always possible to
- // select the right formula and avoid division by zero and even
- // numerical inaccuracy. Checking the elements in turn and using
- // the first one greater than 0.45 is safe (this leads to a simple
- // test since qi = 0.45 implies 4 qi^2 - 1 = -0.19)
- T s = ort[0][0].add(ort[1][1]).add(ort[2][2]);
- if (s.getReal() > -0.19) {
- // compute q0 and deduce q1, q2 and q3
- quat[0] = s.add(1.0).sqrt().multiply(0.5);
- T inv = quat[0].reciprocal().multiply(0.25);
- quat[1] = inv.multiply(ort[1][2].subtract(ort[2][1]));
- quat[2] = inv.multiply(ort[2][0].subtract(ort[0][2]));
- quat[3] = inv.multiply(ort[0][1].subtract(ort[1][0]));
- } else {
- s = ort[0][0].subtract(ort[1][1]).subtract(ort[2][2]);
- if (s.getReal() > -0.19) {
- // compute q1 and deduce q0, q2 and q3
- quat[1] = s.add(1.0).sqrt().multiply(0.5);
- T inv = quat[1].reciprocal().multiply(0.25);
- quat[0] = inv.multiply(ort[1][2].subtract(ort[2][1]));
- quat[2] = inv.multiply(ort[0][1].add(ort[1][0]));
- quat[3] = inv.multiply(ort[0][2].add(ort[2][0]));
- } else {
- s = ort[1][1].subtract(ort[0][0]).subtract(ort[2][2]);
- if (s.getReal() > -0.19) {
- // compute q2 and deduce q0, q1 and q3
- quat[2] = s.add(1.0).sqrt().multiply(0.5);
- T inv = quat[2].reciprocal().multiply(0.25);
- quat[0] = inv.multiply(ort[2][0].subtract(ort[0][2]));
- quat[1] = inv.multiply(ort[0][1].add(ort[1][0]));
- quat[3] = inv.multiply(ort[2][1].add(ort[1][2]));
- } else {
- // compute q3 and deduce q0, q1 and q2
- s = ort[2][2].subtract(ort[0][0]).subtract(ort[1][1]);
- quat[3] = s.add(1.0).sqrt().multiply(0.5);
- T inv = quat[3].reciprocal().multiply(0.25);
- quat[0] = inv.multiply(ort[0][1].subtract(ort[1][0]));
- quat[1] = inv.multiply(ort[0][2].add(ort[2][0]));
- quat[2] = inv.multiply(ort[2][1].add(ort[1][2]));
- }
- }
- }
- return quat;
- }
- /** Revert a rotation.
- * Build a rotation which reverse the effect of another
- * rotation. This means that if r(u) = v, then r.revert(v) = u. The
- * instance is not changed.
- * @return a new rotation whose effect is the reverse of the effect
- * of the instance
- */
- public FieldRotation<T> revert() {
- return new FieldRotation<>(q0.negate(), q1, q2, q3, false);
- }
- /** Get the scalar coordinate of the quaternion.
- * @return scalar coordinate of the quaternion
- */
- public T getQ0() {
- return q0;
- }
- /** Get the first coordinate of the vectorial part of the quaternion.
- * @return first coordinate of the vectorial part of the quaternion
- */
- public T getQ1() {
- return q1;
- }
- /** Get the second coordinate of the vectorial part of the quaternion.
- * @return second coordinate of the vectorial part of the quaternion
- */
- public T getQ2() {
- return q2;
- }
- /** Get the third coordinate of the vectorial part of the quaternion.
- * @return third coordinate of the vectorial part of the quaternion
- */
- public T getQ3() {
- return q3;
- }
- /** Get the normalized axis of the rotation.
- * <p>
- * Note that as {@link #getAngle()} always returns an angle
- * between 0 and π, changing the convention changes the
- * direction of the axis, not the sign of the angle.
- * </p>
- * @param convention convention to use for the semantics of the angle
- * @return normalized axis of the rotation
- * @see #FieldRotation(FieldVector3D, CalculusFieldElement, RotationConvention)
- */
- public FieldVector3D<T> getAxis(final RotationConvention convention) {
- final T squaredSine = q1.square().add(q2.square()).add(q3.square());
- if (squaredSine.getReal() == 0) {
- final Field<T> field = squaredSine.getField();
- return new FieldVector3D<>(convention == RotationConvention.VECTOR_OPERATOR ? field.getOne(): field.getOne().negate(),
- field.getZero(),
- field.getZero());
- } else {
- final double sgn = convention == RotationConvention.VECTOR_OPERATOR ? +1 : -1;
- if (q0.getReal() < 0) {
- T inverse = squaredSine.sqrt().reciprocal().multiply(sgn);
- return new FieldVector3D<>(q1.multiply(inverse), q2.multiply(inverse), q3.multiply(inverse));
- }
- final T inverse = squaredSine.sqrt().reciprocal().negate().multiply(sgn);
- return new FieldVector3D<>(q1.multiply(inverse), q2.multiply(inverse), q3.multiply(inverse));
- }
- }
- /** Get the angle of the rotation.
- * @return angle of the rotation (between 0 and π)
- * @see #FieldRotation(FieldVector3D, CalculusFieldElement, RotationConvention)
- */
- public T getAngle() {
- if ((q0.getReal() < -0.1) || (q0.getReal() > 0.1)) {
- return q1.square().add(q2.square()).add(q3.square()).sqrt().asin().multiply(2);
- } else if (q0.getReal() < 0) {
- return q0.negate().acos().multiply(2);
- }
- return q0.acos().multiply(2);
- }
- /** Get the Cardan or Euler angles corresponding to the instance.
- * <p>The equations show that each rotation can be defined by two
- * different values of the Cardan or Euler angles set. For example
- * if Cardan angles are used, the rotation defined by the angles
- * a<sub>1</sub>, a<sub>2</sub> and a<sub>3</sub> is the same as
- * the rotation defined by the angles π + a<sub>1</sub>, π
- * - a<sub>2</sub> and π + a<sub>3</sub>. This method implements
- * the following arbitrary choices:</p>
- * <ul>
- * <li>for Cardan angles, the chosen set is the one for which the
- * second angle is between -π/2 and π/2 (i.e its cosine is
- * positive),</li>
- * <li>for Euler angles, the chosen set is the one for which the
- * second angle is between 0 and π (i.e its sine is positive).</li>
- * </ul>
- * <p>
- * The algorithm used here works even when the rotation is exactly at the
- * the singularity of the rotation order and convention. In this case, one of
- * the angles in the singular pair is arbitrarily set to exactly 0 and the
- * second angle is computed. The angle set to 0 in the singular case is the
- * angle of the first rotation in the case of Cardan orders, and it is the angle
- * of the last rotation in the case of Euler orders. This implies that extracting
- * the angles of a rotation never fails (it used to trigger an exception in singular
- * cases up to Hipparchus 3.0).
- * </p>
- * @param order rotation order to use
- * @param convention convention to use for the semantics of the angle
- * @return an array of three angles, in the order specified by the set
- */
- public T[] getAngles(final RotationOrder order, RotationConvention convention) {
- return order.getAngles(this, convention);
- }
- /** Get the 3X3 matrix corresponding to the instance
- * @return the matrix corresponding to the instance
- */
- public T[][] getMatrix() {
- // products
- final T q0q0 = q0.square();
- final T q0q1 = q0.multiply(q1);
- final T q0q2 = q0.multiply(q2);
- final T q0q3 = q0.multiply(q3);
- final T q1q1 = q1.square();
- final T q1q2 = q1.multiply(q2);
- final T q1q3 = q1.multiply(q3);
- final T q2q2 = q2.square();
- final T q2q3 = q2.multiply(q3);
- final T q3q3 = q3.square();
- // create the matrix
- final T[][] m = MathArrays.buildArray(q0.getField(), 3, 3);
- m [0][0] = q0q0.add(q1q1).multiply(2).subtract(1);
- m [1][0] = q1q2.subtract(q0q3).multiply(2);
- m [2][0] = q1q3.add(q0q2).multiply(2);
- m [0][1] = q1q2.add(q0q3).multiply(2);
- m [1][1] = q0q0.add(q2q2).multiply(2).subtract(1);
- m [2][1] = q2q3.subtract(q0q1).multiply(2);
- m [0][2] = q1q3.subtract(q0q2).multiply(2);
- m [1][2] = q2q3.add(q0q1).multiply(2);
- m [2][2] = q0q0.add(q3q3).multiply(2).subtract(1);
- return m;
- }
- /** Convert to a constant vector without derivatives.
- * @return a constant vector
- */
- public Rotation toRotation() {
- return new Rotation(q0.getReal(), q1.getReal(), q2.getReal(), q3.getReal(), false);
- }
- /** Apply the rotation to a vector.
- * @param u vector to apply the rotation to
- * @return a new vector which is the image of u by the rotation
- */
- public FieldVector3D<T> applyTo(final FieldVector3D<T> u) {
- final T x = u.getX();
- final T y = u.getY();
- final T z = u.getZ();
- final T s = q1.multiply(x).add(q2.multiply(y)).add(q3.multiply(z));
- return new FieldVector3D<>(q0.multiply(x.multiply(q0).subtract(q2.multiply(z).subtract(q3.multiply(y)))).add(s.multiply(q1)).multiply(2).subtract(x),
- q0.multiply(y.multiply(q0).subtract(q3.multiply(x).subtract(q1.multiply(z)))).add(s.multiply(q2)).multiply(2).subtract(y),
- q0.multiply(z.multiply(q0).subtract(q1.multiply(y).subtract(q2.multiply(x)))).add(s.multiply(q3)).multiply(2).subtract(z));
- }
- /** Apply the rotation to a vector.
- * @param u vector to apply the rotation to
- * @return a new vector which is the image of u by the rotation
- */
- public FieldVector3D<T> applyTo(final Vector3D u) {
- final double x = u.getX();
- final double y = u.getY();
- final double z = u.getZ();
- final T s = q1.multiply(x).add(q2.multiply(y)).add(q3.multiply(z));
- return new FieldVector3D<>(q0.multiply(q0.multiply(x).subtract(q2.multiply(z).subtract(q3.multiply(y)))).add(s.multiply(q1)).multiply(2).subtract(x),
- q0.multiply(q0.multiply(y).subtract(q3.multiply(x).subtract(q1.multiply(z)))).add(s.multiply(q2)).multiply(2).subtract(y),
- q0.multiply(q0.multiply(z).subtract(q1.multiply(y).subtract(q2.multiply(x)))).add(s.multiply(q3)).multiply(2).subtract(z));
- }
- /** Apply the rotation to a vector stored in an array.
- * @param in an array with three items which stores vector to rotate
- * @param out an array with three items to put result to (it can be the same
- * array as in)
- */
- public void applyTo(final T[] in, final T[] out) {
- final T x = in[0];
- final T y = in[1];
- final T z = in[2];
- final T s = q1.multiply(x).add(q2.multiply(y)).add(q3.multiply(z));
- out[0] = q0.multiply(x.multiply(q0).subtract(q2.multiply(z).subtract(q3.multiply(y)))).add(s.multiply(q1)).multiply(2).subtract(x);
- out[1] = q0.multiply(y.multiply(q0).subtract(q3.multiply(x).subtract(q1.multiply(z)))).add(s.multiply(q2)).multiply(2).subtract(y);
- out[2] = q0.multiply(z.multiply(q0).subtract(q1.multiply(y).subtract(q2.multiply(x)))).add(s.multiply(q3)).multiply(2).subtract(z);
- }
- /** Apply the rotation to a vector stored in an array.
- * @param in an array with three items which stores vector to rotate
- * @param out an array with three items to put result to
- */
- public void applyTo(final double[] in, final T[] out) {
- final double x = in[0];
- final double y = in[1];
- final double z = in[2];
- final T s = q1.multiply(x).add(q2.multiply(y)).add(q3.multiply(z));
- out[0] = q0.multiply(q0.multiply(x).subtract(q2.multiply(z).subtract(q3.multiply(y)))).add(s.multiply(q1)).multiply(2).subtract(x);
- out[1] = q0.multiply(q0.multiply(y).subtract(q3.multiply(x).subtract(q1.multiply(z)))).add(s.multiply(q2)).multiply(2).subtract(y);
- out[2] = q0.multiply(q0.multiply(z).subtract(q1.multiply(y).subtract(q2.multiply(x)))).add(s.multiply(q3)).multiply(2).subtract(z);
- }
- /** Apply a rotation to a vector.
- * @param r rotation to apply
- * @param u vector to apply the rotation to
- * @param <T> the type of the field elements
- * @return a new vector which is the image of u by the rotation
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> applyTo(final Rotation r, final FieldVector3D<T> u) {
- final T x = u.getX();
- final T y = u.getY();
- final T z = u.getZ();
- final T s = x.multiply(r.getQ1()).add(y.multiply(r.getQ2())).add(z.multiply(r.getQ3()));
- return new FieldVector3D<>(x.multiply(r.getQ0()).subtract(z.multiply(r.getQ2()).subtract(y.multiply(r.getQ3()))).multiply(r.getQ0()).add(s.multiply(r.getQ1())).multiply(2).subtract(x),
- y.multiply(r.getQ0()).subtract(x.multiply(r.getQ3()).subtract(z.multiply(r.getQ1()))).multiply(r.getQ0()).add(s.multiply(r.getQ2())).multiply(2).subtract(y),
- z.multiply(r.getQ0()).subtract(y.multiply(r.getQ1()).subtract(x.multiply(r.getQ2()))).multiply(r.getQ0()).add(s.multiply(r.getQ3())).multiply(2).subtract(z));
- }
- /** Apply the inverse of the rotation to a vector.
- * @param u vector to apply the inverse of the rotation to
- * @return a new vector which such that u is its image by the rotation
- */
- public FieldVector3D<T> applyInverseTo(final FieldVector3D<T> u) {
- final T x = u.getX();
- final T y = u.getY();
- final T z = u.getZ();
- final T s = q1.multiply(x).add(q2.multiply(y)).add(q3.multiply(z));
- final T m0 = q0.negate();
- return new FieldVector3D<>(m0.multiply(x.multiply(m0).subtract(q2.multiply(z).subtract(q3.multiply(y)))).add(s.multiply(q1)).multiply(2).subtract(x),
- m0.multiply(y.multiply(m0).subtract(q3.multiply(x).subtract(q1.multiply(z)))).add(s.multiply(q2)).multiply(2).subtract(y),
- m0.multiply(z.multiply(m0).subtract(q1.multiply(y).subtract(q2.multiply(x)))).add(s.multiply(q3)).multiply(2).subtract(z));
- }
- /** Apply the inverse of the rotation to a vector.
- * @param u vector to apply the inverse of the rotation to
- * @return a new vector which such that u is its image by the rotation
- */
- public FieldVector3D<T> applyInverseTo(final Vector3D u) {
- final double x = u.getX();
- final double y = u.getY();
- final double z = u.getZ();
- final T s = q1.multiply(x).add(q2.multiply(y)).add(q3.multiply(z));
- final T m0 = q0.negate();
- return new FieldVector3D<>(m0.multiply(m0.multiply(x).subtract(q2.multiply(z).subtract(q3.multiply(y)))).add(s.multiply(q1)).multiply(2).subtract(x),
- m0.multiply(m0.multiply(y).subtract(q3.multiply(x).subtract(q1.multiply(z)))).add(s.multiply(q2)).multiply(2).subtract(y),
- m0.multiply(m0.multiply(z).subtract(q1.multiply(y).subtract(q2.multiply(x)))).add(s.multiply(q3)).multiply(2).subtract(z));
- }
- /** Apply the inverse of the rotation to a vector stored in an array.
- * @param in an array with three items which stores vector to rotate
- * @param out an array with three items to put result to (it can be the same
- * array as in)
- */
- public void applyInverseTo(final T[] in, final T[] out) {
- final T x = in[0];
- final T y = in[1];
- final T z = in[2];
- final T s = q1.multiply(x).add(q2.multiply(y)).add(q3.multiply(z));
- final T m0 = q0.negate();
- out[0] = m0.multiply(x.multiply(m0).subtract(q2.multiply(z).subtract(q3.multiply(y)))).add(s.multiply(q1)).multiply(2).subtract(x);
- out[1] = m0.multiply(y.multiply(m0).subtract(q3.multiply(x).subtract(q1.multiply(z)))).add(s.multiply(q2)).multiply(2).subtract(y);
- out[2] = m0.multiply(z.multiply(m0).subtract(q1.multiply(y).subtract(q2.multiply(x)))).add(s.multiply(q3)).multiply(2).subtract(z);
- }
- /** Apply the inverse of the rotation to a vector stored in an array.
- * @param in an array with three items which stores vector to rotate
- * @param out an array with three items to put result to
- */
- public void applyInverseTo(final double[] in, final T[] out) {
- final double x = in[0];
- final double y = in[1];
- final double z = in[2];
- final T s = q1.multiply(x).add(q2.multiply(y)).add(q3.multiply(z));
- final T m0 = q0.negate();
- out[0] = m0.multiply(m0.multiply(x).subtract(q2.multiply(z).subtract(q3.multiply(y)))).add(s.multiply(q1)).multiply(2).subtract(x);
- out[1] = m0.multiply(m0.multiply(y).subtract(q3.multiply(x).subtract(q1.multiply(z)))).add(s.multiply(q2)).multiply(2).subtract(y);
- out[2] = m0.multiply(m0.multiply(z).subtract(q1.multiply(y).subtract(q2.multiply(x)))).add(s.multiply(q3)).multiply(2).subtract(z);
- }
- /** Apply the inverse of a rotation to a vector.
- * @param r rotation to apply
- * @param u vector to apply the inverse of the rotation to
- * @param <T> the type of the field elements
- * @return a new vector which such that u is its image by the rotation
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> applyInverseTo(final Rotation r, final FieldVector3D<T> u) {
- final T x = u.getX();
- final T y = u.getY();
- final T z = u.getZ();
- final T s = x.multiply(r.getQ1()).add(y.multiply(r.getQ2())).add(z.multiply(r.getQ3()));
- final double m0 = -r.getQ0();
- return new FieldVector3D<>(x.multiply(m0).subtract(z.multiply(r.getQ2()).subtract(y.multiply(r.getQ3()))).multiply(m0).add(s.multiply(r.getQ1())).multiply(2).subtract(x),
- y.multiply(m0).subtract(x.multiply(r.getQ3()).subtract(z.multiply(r.getQ1()))).multiply(m0).add(s.multiply(r.getQ2())).multiply(2).subtract(y),
- z.multiply(m0).subtract(y.multiply(r.getQ1()).subtract(x.multiply(r.getQ2()))).multiply(m0).add(s.multiply(r.getQ3())).multiply(2).subtract(z));
- }
- /** Apply the instance to another rotation.
- * <p>
- * Calling this method is equivalent to call
- * {@link #compose(FieldRotation, RotationConvention)
- * compose(r, RotationConvention.VECTOR_OPERATOR)}.
- * </p>
- * @param r rotation to apply the rotation to
- * @return a new rotation which is the composition of r by the instance
- */
- public FieldRotation<T> applyTo(final FieldRotation<T> r) {
- return compose(r, RotationConvention.VECTOR_OPERATOR);
- }
- /** Compose the instance with another rotation.
- * <p>
- * If the semantics of the rotations composition corresponds to a
- * {@link RotationConvention#VECTOR_OPERATOR vector operator} convention,
- * applying the instance to a rotation is computing the composition
- * in an order compliant with the following rule : let {@code u} be any
- * vector and {@code v} its image by {@code r1} (i.e.
- * {@code r1.applyTo(u) = v}). Let {@code w} be the image of {@code v} by
- * rotation {@code r2} (i.e. {@code r2.applyTo(v) = w}). Then
- * {@code w = comp.applyTo(u)}, where
- * {@code comp = r2.compose(r1, RotationConvention.VECTOR_OPERATOR)}.
- * </p>
- * <p>
- * If the semantics of the rotations composition corresponds to a
- * {@link RotationConvention#FRAME_TRANSFORM frame transform} convention,
- * the application order will be reversed. So keeping the exact same
- * meaning of all {@code r1}, {@code r2}, {@code u}, {@code v}, {@code w}
- * and {@code comp} as above, {@code comp} could also be computed as
- * {@code comp = r1.compose(r2, RotationConvention.FRAME_TRANSFORM)}.
- * </p>
- * @param r rotation to apply the rotation to
- * @param convention convention to use for the semantics of the angle
- * @return a new rotation which is the composition of r by the instance
- */
- public FieldRotation<T> compose(final FieldRotation<T> r, final RotationConvention convention) {
- return convention == RotationConvention.VECTOR_OPERATOR ?
- composeInternal(r) : r.composeInternal(this);
- }
- /** Compose the instance with another rotation using vector operator convention.
- * @param r rotation to apply the rotation to
- * @return a new rotation which is the composition of r by the instance
- * using vector operator convention
- */
- private FieldRotation<T> composeInternal(final FieldRotation<T> r) {
- return new FieldRotation<>(r.q0.multiply(q0).subtract(r.q1.multiply(q1).add(r.q2.multiply(q2)).add(r.q3.multiply(q3))),
- r.q1.multiply(q0).add(r.q0.multiply(q1)).add(r.q2.multiply(q3).subtract(r.q3.multiply(q2))),
- r.q2.multiply(q0).add(r.q0.multiply(q2)).add(r.q3.multiply(q1).subtract(r.q1.multiply(q3))),
- r.q3.multiply(q0).add(r.q0.multiply(q3)).add(r.q1.multiply(q2).subtract(r.q2.multiply(q1))),
- false);
- }
- /** Apply the instance to another rotation.
- * <p>
- * Calling this method is equivalent to call
- * {@link #compose(Rotation, RotationConvention)
- * compose(r, RotationConvention.VECTOR_OPERATOR)}.
- * </p>
- * @param r rotation to apply the rotation to
- * @return a new rotation which is the composition of r by the instance
- */
- public FieldRotation<T> applyTo(final Rotation r) {
- return compose(r, RotationConvention.VECTOR_OPERATOR);
- }
- /** Compose the instance with another rotation.
- * <p>
- * If the semantics of the rotations composition corresponds to a
- * {@link RotationConvention#VECTOR_OPERATOR vector operator} convention,
- * applying the instance to a rotation is computing the composition
- * in an order compliant with the following rule : let {@code u} be any
- * vector and {@code v} its image by {@code r1} (i.e.
- * {@code r1.applyTo(u) = v}). Let {@code w} be the image of {@code v} by
- * rotation {@code r2} (i.e. {@code r2.applyTo(v) = w}). Then
- * {@code w = comp.applyTo(u)}, where
- * {@code comp = r2.compose(r1, RotationConvention.VECTOR_OPERATOR)}.
- * </p>
- * <p>
- * If the semantics of the rotations composition corresponds to a
- * {@link RotationConvention#FRAME_TRANSFORM frame transform} convention,
- * the application order will be reversed. So keeping the exact same
- * meaning of all {@code r1}, {@code r2}, {@code u}, {@code v}, {@code w}
- * and {@code comp} as above, {@code comp} could also be computed as
- * {@code comp = r1.compose(r2, RotationConvention.FRAME_TRANSFORM)}.
- * </p>
- * @param r rotation to apply the rotation to
- * @param convention convention to use for the semantics of the angle
- * @return a new rotation which is the composition of r by the instance
- */
- public FieldRotation<T> compose(final Rotation r, final RotationConvention convention) {
- return convention == RotationConvention.VECTOR_OPERATOR ?
- composeInternal(r) : applyTo(r, this);
- }
- /** Compose the instance with another rotation using vector operator convention.
- * @param r rotation to apply the rotation to
- * @return a new rotation which is the composition of r by the instance
- * using vector operator convention
- */
- private FieldRotation<T> composeInternal(final Rotation r) {
- return new FieldRotation<>(q0.multiply(r.getQ0()).subtract(q1.multiply(r.getQ1()).add(q2.multiply(r.getQ2())).add(q3.multiply(r.getQ3()))),
- q0.multiply(r.getQ1()).add(q1.multiply(r.getQ0())).add(q3.multiply(r.getQ2()).subtract(q2.multiply(r.getQ3()))),
- q0.multiply(r.getQ2()).add(q2.multiply(r.getQ0())).add(q1.multiply(r.getQ3()).subtract(q3.multiply(r.getQ1()))),
- q0.multiply(r.getQ3()).add(q3.multiply(r.getQ0())).add(q2.multiply(r.getQ1()).subtract(q1.multiply(r.getQ2()))),
- false);
- }
- /** Apply a rotation to another rotation.
- * Applying a rotation to another rotation is computing the composition
- * in an order compliant with the following rule : let u be any
- * vector and v its image by rInner (i.e. rInner.applyTo(u) = v), let w be the image
- * of v by rOuter (i.e. rOuter.applyTo(v) = w), then w = comp.applyTo(u),
- * where comp = applyTo(rOuter, rInner).
- * @param r1 rotation to apply
- * @param rInner rotation to apply the rotation to
- * @param <T> the type of the field elements
- * @return a new rotation which is the composition of r by the instance
- */
- public static <T extends CalculusFieldElement<T>> FieldRotation<T> applyTo(final Rotation r1, final FieldRotation<T> rInner) {
- return new FieldRotation<>(rInner.q0.multiply(r1.getQ0()).subtract(rInner.q1.multiply(r1.getQ1()).add(rInner.q2.multiply(r1.getQ2())).add(rInner.q3.multiply(r1.getQ3()))),
- rInner.q1.multiply(r1.getQ0()).add(rInner.q0.multiply(r1.getQ1())).add(rInner.q2.multiply(r1.getQ3()).subtract(rInner.q3.multiply(r1.getQ2()))),
- rInner.q2.multiply(r1.getQ0()).add(rInner.q0.multiply(r1.getQ2())).add(rInner.q3.multiply(r1.getQ1()).subtract(rInner.q1.multiply(r1.getQ3()))),
- rInner.q3.multiply(r1.getQ0()).add(rInner.q0.multiply(r1.getQ3())).add(rInner.q1.multiply(r1.getQ2()).subtract(rInner.q2.multiply(r1.getQ1()))),
- false);
- }
- /** Apply the inverse of the instance to another rotation.
- * <p>
- * Calling this method is equivalent to call
- * {@link #composeInverse(FieldRotation, RotationConvention)
- * composeInverse(r, RotationConvention.VECTOR_OPERATOR)}.
- * </p>
- * @param r rotation to apply the rotation to
- * @return a new rotation which is the composition of r by the inverse
- * of the instance
- */
- public FieldRotation<T> applyInverseTo(final FieldRotation<T> r) {
- return composeInverse(r, RotationConvention.VECTOR_OPERATOR);
- }
- /** Compose the inverse of the instance with another rotation.
- * <p>
- * If the semantics of the rotations composition corresponds to a
- * {@link RotationConvention#VECTOR_OPERATOR vector operator} convention,
- * applying the inverse of the instance to a rotation is computing
- * the composition in an order compliant with the following rule :
- * let {@code u} be any vector and {@code v} its image by {@code r1}
- * (i.e. {@code r1.applyTo(u) = v}). Let {@code w} be the inverse image
- * of {@code v} by {@code r2} (i.e. {@code r2.applyInverseTo(v) = w}).
- * Then {@code w = comp.applyTo(u)}, where
- * {@code comp = r2.composeInverse(r1)}.
- * </p>
- * <p>
- * If the semantics of the rotations composition corresponds to a
- * {@link RotationConvention#FRAME_TRANSFORM frame transform} convention,
- * the application order will be reversed, which means it is the
- * <em>innermost</em> rotation that will be reversed. So keeping the exact same
- * meaning of all {@code r1}, {@code r2}, {@code u}, {@code v}, {@code w}
- * and {@code comp} as above, {@code comp} could also be computed as
- * {@code comp = r1.revert().composeInverse(r2.revert(), RotationConvention.FRAME_TRANSFORM)}.
- * </p>
- * @param r rotation to apply the rotation to
- * @param convention convention to use for the semantics of the angle
- * @return a new rotation which is the composition of r by the inverse
- * of the instance
- */
- public FieldRotation<T> composeInverse(final FieldRotation<T> r, final RotationConvention convention) {
- return convention == RotationConvention.VECTOR_OPERATOR ?
- composeInverseInternal(r) : r.composeInternal(revert());
- }
- /** Compose the inverse of the instance with another rotation
- * using vector operator convention.
- * @param r rotation to apply the rotation to
- * @return a new rotation which is the composition of r by the inverse
- * of the instance using vector operator convention
- */
- private FieldRotation<T> composeInverseInternal(FieldRotation<T> r) {
- return new FieldRotation<>(r.q0.multiply(q0).add(r.q1.multiply(q1)).add(r.q2.multiply(q2)).add(r.q3.multiply(q3)).negate(),
- r.q0.multiply(q1).add(r.q2.multiply(q3).subtract(r.q3.multiply(q2))).subtract(r.q1.multiply(q0)),
- r.q0.multiply(q2).add(r.q3.multiply(q1).subtract(r.q1.multiply(q3))).subtract(r.q2.multiply(q0)),
- r.q0.multiply(q3).add(r.q1.multiply(q2).subtract(r.q2.multiply(q1))).subtract(r.q3.multiply(q0)),
- false);
- }
- /** Apply the inverse of the instance to another rotation.
- * <p>
- * Calling this method is equivalent to call
- * {@link #composeInverse(Rotation, RotationConvention)
- * composeInverse(r, RotationConvention.VECTOR_OPERATOR)}.
- * </p>
- * @param r rotation to apply the rotation to
- * @return a new rotation which is the composition of r by the inverse
- * of the instance
- */
- public FieldRotation<T> applyInverseTo(final Rotation r) {
- return composeInverse(r, RotationConvention.VECTOR_OPERATOR);
- }
- /** Compose the inverse of the instance with another rotation.
- * <p>
- * If the semantics of the rotations composition corresponds to a
- * {@link RotationConvention#VECTOR_OPERATOR vector operator} convention,
- * applying the inverse of the instance to a rotation is computing
- * the composition in an order compliant with the following rule :
- * let {@code u} be any vector and {@code v} its image by {@code r1}
- * (i.e. {@code r1.applyTo(u) = v}). Let {@code w} be the inverse image
- * of {@code v} by {@code r2} (i.e. {@code r2.applyInverseTo(v) = w}).
- * Then {@code w = comp.applyTo(u)}, where
- * {@code comp = r2.composeInverse(r1)}.
- * </p>
- * <p>
- * If the semantics of the rotations composition corresponds to a
- * {@link RotationConvention#FRAME_TRANSFORM frame transform} convention,
- * the application order will be reversed, which means it is the
- * <em>innermost</em> rotation that will be reversed. So keeping the exact same
- * meaning of all {@code r1}, {@code r2}, {@code u}, {@code v}, {@code w}
- * and {@code comp} as above, {@code comp} could also be computed as
- * {@code comp = r1.revert().composeInverse(r2.revert(), RotationConvention.FRAME_TRANSFORM)}.
- * </p>
- * @param r rotation to apply the rotation to
- * @param convention convention to use for the semantics of the angle
- * @return a new rotation which is the composition of r by the inverse
- * of the instance
- */
- public FieldRotation<T> composeInverse(final Rotation r, final RotationConvention convention) {
- return convention == RotationConvention.VECTOR_OPERATOR ?
- composeInverseInternal(r) : applyTo(r, revert());
- }
- /** Compose the inverse of the instance with another rotation
- * using vector operator convention.
- * @param r rotation to apply the rotation to
- * @return a new rotation which is the composition of r by the inverse
- * of the instance using vector operator convention
- */
- private FieldRotation<T> composeInverseInternal(Rotation r) {
- return new FieldRotation<>(q0.multiply(r.getQ0()).add(q1.multiply(r.getQ1()).add(q2.multiply(r.getQ2())).add(q3.multiply(r.getQ3()))).negate(),
- q1.multiply(r.getQ0()).add(q3.multiply(r.getQ2()).subtract(q2.multiply(r.getQ3()))).subtract(q0.multiply(r.getQ1())),
- q2.multiply(r.getQ0()).add(q1.multiply(r.getQ3()).subtract(q3.multiply(r.getQ1()))).subtract(q0.multiply(r.getQ2())),
- q3.multiply(r.getQ0()).add(q2.multiply(r.getQ1()).subtract(q1.multiply(r.getQ2()))).subtract(q0.multiply(r.getQ3())),
- false);
- }
- /** Apply the inverse of a rotation to another rotation.
- * Applying the inverse of a rotation to another rotation is computing
- * the composition in an order compliant with the following rule :
- * let u be any vector and v its image by rInner (i.e. rInner.applyTo(u) = v),
- * let w be the inverse image of v by rOuter
- * (i.e. rOuter.applyInverseTo(v) = w), then w = comp.applyTo(u), where
- * comp = applyInverseTo(rOuter, rInner).
- * @param rOuter rotation to apply the rotation to
- * @param rInner rotation to apply the rotation to
- * @param <T> the type of the field elements
- * @return a new rotation which is the composition of r by the inverse
- * of the instance
- */
- public static <T extends CalculusFieldElement<T>> FieldRotation<T> applyInverseTo(final Rotation rOuter, final FieldRotation<T> rInner) {
- return new FieldRotation<>(rInner.q0.multiply(rOuter.getQ0()).add(rInner.q1.multiply(rOuter.getQ1()).add(rInner.q2.multiply(rOuter.getQ2())).add(rInner.q3.multiply(rOuter.getQ3()))).negate(),
- rInner.q0.multiply(rOuter.getQ1()).add(rInner.q2.multiply(rOuter.getQ3()).subtract(rInner.q3.multiply(rOuter.getQ2()))).subtract(rInner.q1.multiply(rOuter.getQ0())),
- rInner.q0.multiply(rOuter.getQ2()).add(rInner.q3.multiply(rOuter.getQ1()).subtract(rInner.q1.multiply(rOuter.getQ3()))).subtract(rInner.q2.multiply(rOuter.getQ0())),
- rInner.q0.multiply(rOuter.getQ3()).add(rInner.q1.multiply(rOuter.getQ2()).subtract(rInner.q2.multiply(rOuter.getQ1()))).subtract(rInner.q3.multiply(rOuter.getQ0())),
- false);
- }
- /** Perfect orthogonality on a 3X3 matrix.
- * @param m initial matrix (not exactly orthogonal)
- * @param threshold convergence threshold for the iterative
- * orthogonality correction (convergence is reached when the
- * difference between two steps of the Frobenius norm of the
- * correction is below this threshold)
- * @return an orthogonal matrix close to m
- * @exception MathIllegalArgumentException if the matrix cannot be
- * orthogonalized with the given threshold after 10 iterations
- */
- private T[][] orthogonalizeMatrix(final T[][] m, final double threshold)
- throws MathIllegalArgumentException {
- T x00 = m[0][0];
- T x01 = m[0][1];
- T x02 = m[0][2];
- T x10 = m[1][0];
- T x11 = m[1][1];
- T x12 = m[1][2];
- T x20 = m[2][0];
- T x21 = m[2][1];
- T x22 = m[2][2];
- double fn = 0;
- double fn1;
- final T[][] o = MathArrays.buildArray(m[0][0].getField(), 3, 3);
- // iterative correction: Xn+1 = Xn - 0.5 * (Xn.Mt.Xn - M)
- int i;
- for (i = 0; i < 11; ++i) {
- // Mt.Xn
- final T mx00 = m[0][0].multiply(x00).add(m[1][0].multiply(x10)).add(m[2][0].multiply(x20));
- final T mx10 = m[0][1].multiply(x00).add(m[1][1].multiply(x10)).add(m[2][1].multiply(x20));
- final T mx20 = m[0][2].multiply(x00).add(m[1][2].multiply(x10)).add(m[2][2].multiply(x20));
- final T mx01 = m[0][0].multiply(x01).add(m[1][0].multiply(x11)).add(m[2][0].multiply(x21));
- final T mx11 = m[0][1].multiply(x01).add(m[1][1].multiply(x11)).add(m[2][1].multiply(x21));
- final T mx21 = m[0][2].multiply(x01).add(m[1][2].multiply(x11)).add(m[2][2].multiply(x21));
- final T mx02 = m[0][0].multiply(x02).add(m[1][0].multiply(x12)).add(m[2][0].multiply(x22));
- final T mx12 = m[0][1].multiply(x02).add(m[1][1].multiply(x12)).add(m[2][1].multiply(x22));
- final T mx22 = m[0][2].multiply(x02).add(m[1][2].multiply(x12)).add(m[2][2].multiply(x22));
- // Xn+1
- o[0][0] = x00.subtract(x00.multiply(mx00).add(x01.multiply(mx10)).add(x02.multiply(mx20)).subtract(m[0][0]).multiply(0.5));
- o[0][1] = x01.subtract(x00.multiply(mx01).add(x01.multiply(mx11)).add(x02.multiply(mx21)).subtract(m[0][1]).multiply(0.5));
- o[0][2] = x02.subtract(x00.multiply(mx02).add(x01.multiply(mx12)).add(x02.multiply(mx22)).subtract(m[0][2]).multiply(0.5));
- o[1][0] = x10.subtract(x10.multiply(mx00).add(x11.multiply(mx10)).add(x12.multiply(mx20)).subtract(m[1][0]).multiply(0.5));
- o[1][1] = x11.subtract(x10.multiply(mx01).add(x11.multiply(mx11)).add(x12.multiply(mx21)).subtract(m[1][1]).multiply(0.5));
- o[1][2] = x12.subtract(x10.multiply(mx02).add(x11.multiply(mx12)).add(x12.multiply(mx22)).subtract(m[1][2]).multiply(0.5));
- o[2][0] = x20.subtract(x20.multiply(mx00).add(x21.multiply(mx10)).add(x22.multiply(mx20)).subtract(m[2][0]).multiply(0.5));
- o[2][1] = x21.subtract(x20.multiply(mx01).add(x21.multiply(mx11)).add(x22.multiply(mx21)).subtract(m[2][1]).multiply(0.5));
- o[2][2] = x22.subtract(x20.multiply(mx02).add(x21.multiply(mx12)).add(x22.multiply(mx22)).subtract(m[2][2]).multiply(0.5));
- // correction on each elements
- final double corr00 = o[0][0].getReal() - m[0][0].getReal();
- final double corr01 = o[0][1].getReal() - m[0][1].getReal();
- final double corr02 = o[0][2].getReal() - m[0][2].getReal();
- final double corr10 = o[1][0].getReal() - m[1][0].getReal();
- final double corr11 = o[1][1].getReal() - m[1][1].getReal();
- final double corr12 = o[1][2].getReal() - m[1][2].getReal();
- final double corr20 = o[2][0].getReal() - m[2][0].getReal();
- final double corr21 = o[2][1].getReal() - m[2][1].getReal();
- final double corr22 = o[2][2].getReal() - m[2][2].getReal();
- // Frobenius norm of the correction
- fn1 = corr00 * corr00 + corr01 * corr01 + corr02 * corr02 +
- corr10 * corr10 + corr11 * corr11 + corr12 * corr12 +
- corr20 * corr20 + corr21 * corr21 + corr22 * corr22;
- // convergence test
- if (FastMath.abs(fn1 - fn) <= threshold) {
- return o;
- }
- // prepare next iteration
- x00 = o[0][0];
- x01 = o[0][1];
- x02 = o[0][2];
- x10 = o[1][0];
- x11 = o[1][1];
- x12 = o[1][2];
- x20 = o[2][0];
- x21 = o[2][1];
- x22 = o[2][2];
- fn = fn1;
- }
- // the algorithm did not converge after 10 iterations
- throw new MathIllegalArgumentException(LocalizedGeometryFormats.UNABLE_TO_ORTHOGONOLIZE_MATRIX,
- i - 1);
- }
- /** Compute the <i>distance</i> between two rotations.
- * <p>The <i>distance</i> is intended here as a way to check if two
- * rotations are almost similar (i.e. they transform vectors the same way)
- * or very different. It is mathematically defined as the angle of
- * the rotation r that prepended to one of the rotations gives the other
- * one: \(r_1(r) = r_2\)
- * </p>
- * <p>This distance is an angle between 0 and π. Its value is the smallest
- * possible upper bound of the angle in radians between r<sub>1</sub>(v)
- * and r<sub>2</sub>(v) for all possible vectors v. This upper bound is
- * reached for some v. The distance is equal to 0 if and only if the two
- * rotations are identical.</p>
- * <p>Comparing two rotations should always be done using this value rather
- * than for example comparing the components of the quaternions. It is much
- * more stable, and has a geometric meaning. Also comparing quaternions
- * components is error prone since for example quaternions (0.36, 0.48, -0.48, -0.64)
- * and (-0.36, -0.48, 0.48, 0.64) represent exactly the same rotation despite
- * their components are different (they are exact opposites).</p>
- * @param r1 first rotation
- * @param r2 second rotation
- * @param <T> the type of the field elements
- * @return <i>distance</i> between r1 and r2
- */
- public static <T extends CalculusFieldElement<T>> T distance(final FieldRotation<T> r1, final FieldRotation<T> r2) {
- return r1.composeInverseInternal(r2).getAngle();
- }
- }