PolynomialCurveFitter.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.fitting;
- import java.util.Collection;
- import org.hipparchus.analysis.polynomials.PolynomialFunction;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.linear.DiagonalMatrix;
- import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresBuilder;
- import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem;
- /**
- * Fits points to a {@link
- * org.hipparchus.analysis.polynomials.PolynomialFunction.Parametric polynomial}
- * function.
- * <br>
- * The size of the {@link #withStartPoint(double[]) initial guess} array defines the
- * degree of the polynomial to be fitted.
- * They must be sorted in increasing order of the polynomial's degree.
- * The optimal values of the coefficients will be returned in the same order.
- *
- */
- public class PolynomialCurveFitter extends AbstractCurveFitter {
- /** Parametric function to be fitted. */
- private static final PolynomialFunction.Parametric FUNCTION = new PolynomialFunction.Parametric();
- /** Initial guess. */
- private final double[] initialGuess;
- /** Maximum number of iterations of the optimization algorithm. */
- private final int maxIter;
- /**
- * Constructor used by the factory methods.
- *
- * @param initialGuess Initial guess.
- * @param maxIter Maximum number of iterations of the optimization algorithm.
- * @throws MathRuntimeException if {@code initialGuess} is {@code null}.
- */
- private PolynomialCurveFitter(double[] initialGuess, int maxIter) {
- this.initialGuess = initialGuess.clone();
- this.maxIter = maxIter;
- }
- /**
- * Creates a default curve fitter.
- * Zero will be used as initial guess for the coefficients, and the maximum
- * number of iterations of the optimization algorithm is set to
- * {@link Integer#MAX_VALUE}.
- *
- * @param degree Degree of the polynomial to be fitted.
- * @return a curve fitter.
- *
- * @see #withStartPoint(double[])
- * @see #withMaxIterations(int)
- */
- public static PolynomialCurveFitter create(int degree) {
- return new PolynomialCurveFitter(new double[degree + 1], Integer.MAX_VALUE);
- }
- /**
- * Configure the start point (initial guess).
- * @param newStart new start point (initial guess)
- * @return a new instance.
- */
- public PolynomialCurveFitter withStartPoint(double[] newStart) {
- return new PolynomialCurveFitter(newStart.clone(),
- maxIter);
- }
- /**
- * Configure the maximum number of iterations.
- * @param newMaxIter maximum number of iterations
- * @return a new instance.
- */
- public PolynomialCurveFitter withMaxIterations(int newMaxIter) {
- return new PolynomialCurveFitter(initialGuess,
- newMaxIter);
- }
- /** {@inheritDoc} */
- @Override
- protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) {
- // Prepare least-squares problem.
- final int len = observations.size();
- final double[] target = new double[len];
- final double[] weights = new double[len];
- int i = 0;
- for (WeightedObservedPoint obs : observations) {
- target[i] = obs.getY();
- weights[i] = obs.getWeight();
- ++i;
- }
- final AbstractCurveFitter.TheoreticalValuesFunction model =
- new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations);
- if (initialGuess == null) {
- throw MathRuntimeException.createInternalError();
- }
- // Return a new least squares problem set up to fit a polynomial curve to the
- // observed points.
- return new LeastSquaresBuilder().
- maxEvaluations(Integer.MAX_VALUE).
- maxIterations(maxIter).
- start(initialGuess).
- target(target).
- weight(new DiagonalMatrix(weights)).
- model(model.getModelFunction(), model.getModelFunctionJacobian()).
- build();
- }
- }