HarmonicCurveFitter.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.fitting;
- import java.util.ArrayList;
- import java.util.Collection;
- import java.util.List;
- import org.hipparchus.analysis.function.HarmonicOscillator;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.linear.DiagonalMatrix;
- import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresBuilder;
- import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.SinCos;
- /**
- * Fits points to a {@link
- * org.hipparchus.analysis.function.HarmonicOscillator.Parametric harmonic oscillator}
- * function.
- * <br>
- * The {@link #withStartPoint(double[]) initial guess values} must be passed
- * in the following order:
- * <ul>
- * <li>Amplitude</li>
- * <li>Angular frequency</li>
- * <li>phase</li>
- * </ul>
- * The optimal values will be returned in the same order.
- *
- */
- public class HarmonicCurveFitter extends AbstractCurveFitter {
- /** Parametric function to be fitted. */
- private static final HarmonicOscillator.Parametric FUNCTION = new HarmonicOscillator.Parametric();
- /** Initial guess. */
- private final double[] initialGuess;
- /** Maximum number of iterations of the optimization algorithm. */
- private final int maxIter;
- /**
- * Constructor used by the factory methods.
- *
- * @param initialGuess Initial guess. If set to {@code null}, the initial guess
- * will be estimated using the {@link ParameterGuesser}.
- * @param maxIter Maximum number of iterations of the optimization algorithm.
- */
- private HarmonicCurveFitter(double[] initialGuess, int maxIter) {
- this.initialGuess = initialGuess == null ? null : initialGuess.clone();
- this.maxIter = maxIter;
- }
- /**
- * Creates a default curve fitter.
- * The initial guess for the parameters will be {@link ParameterGuesser}
- * computed automatically, and the maximum number of iterations of the
- * optimization algorithm is set to {@link Integer#MAX_VALUE}.
- *
- * @return a curve fitter.
- *
- * @see #withStartPoint(double[])
- * @see #withMaxIterations(int)
- */
- public static HarmonicCurveFitter create() {
- return new HarmonicCurveFitter(null, Integer.MAX_VALUE);
- }
- /**
- * Configure the start point (initial guess).
- * @param newStart new start point (initial guess)
- * @return a new instance.
- */
- public HarmonicCurveFitter withStartPoint(double[] newStart) {
- return new HarmonicCurveFitter(newStart.clone(),
- maxIter);
- }
- /**
- * Configure the maximum number of iterations.
- * @param newMaxIter maximum number of iterations
- * @return a new instance.
- */
- public HarmonicCurveFitter withMaxIterations(int newMaxIter) {
- return new HarmonicCurveFitter(initialGuess,
- newMaxIter);
- }
- /** {@inheritDoc} */
- @Override
- protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) {
- // Prepare least-squares problem.
- final int len = observations.size();
- final double[] target = new double[len];
- final double[] weights = new double[len];
- int i = 0;
- for (WeightedObservedPoint obs : observations) {
- target[i] = obs.getY();
- weights[i] = obs.getWeight();
- ++i;
- }
- final AbstractCurveFitter.TheoreticalValuesFunction model
- = new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION,
- observations);
- final double[] startPoint = initialGuess != null ?
- initialGuess :
- // Compute estimation.
- new ParameterGuesser(observations).guess();
- // Return a new optimizer set up to fit a Gaussian curve to the
- // observed points.
- return new LeastSquaresBuilder().
- maxEvaluations(Integer.MAX_VALUE).
- maxIterations(maxIter).
- start(startPoint).
- target(target).
- weight(new DiagonalMatrix(weights)).
- model(model.getModelFunction(), model.getModelFunctionJacobian()).
- build();
- }
- /**
- * This class guesses harmonic coefficients from a sample.
- * <p>The algorithm used to guess the coefficients is as follows:</p>
- *
- * <p>We know \( f(t) \) at some sampling points \( t_i \) and want
- * to find \( a \), \( \omega \) and \( \phi \) such that
- * \( f(t) = a \cos (\omega t + \phi) \).
- * </p>
- *
- * <p>From the analytical expression, we can compute two primitives :
- * \[
- * If2(t) = \int f^2 dt = a^2 (t + S(t)) / 2
- * \]
- * \[
- * If'2(t) = \int f'^2 dt = a^2 \omega^2 (t - S(t)) / 2
- * \]
- * where \(S(t) = \frac{\sin(2 (\omega t + \phi))}{2\omega}\)
- * </p>
- *
- * <p>We can remove \(S\) between these expressions :
- * \[
- * If'2(t) = a^2 \omega^2 t - \omega^2 If2(t)
- * \]
- * </p>
- *
- * <p>The preceding expression shows that \(If'2 (t)\) is a linear
- * combination of both \(t\) and \(If2(t)\):
- * \[
- * If'2(t) = A t + B If2(t)
- * \]
- * </p>
- *
- * <p>From the primitive, we can deduce the same form for definite
- * integrals between \(t_1\) and \(t_i\) for each \(t_i\) :
- * \[
- * If2(t_i) - If2(t_1) = A (t_i - t_1) + B (If2 (t_i) - If2(t_1))
- * \]
- * </p>
- *
- * <p>We can find the coefficients \(A\) and \(B\) that best fit the sample
- * to this linear expression by computing the definite integrals for
- * each sample points.
- * </p>
- *
- * <p>For a bilinear expression \(z(x_i, y_i) = A x_i + B y_i\), the
- * coefficients \(A\) and \(B\) that minimize a least-squares criterion
- * \(\sum (z_i - z(x_i, y_i))^2\) are given by these expressions:</p>
- * \[
- * A = \frac{\sum y_i y_i \sum x_i z_i - \sum x_i y_i \sum y_i z_i}
- * {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i}
- * \]
- * \[
- * B = \frac{\sum x_i x_i \sum y_i z_i - \sum x_i y_i \sum x_i z_i}
- * {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i}
- *
- * \]
- *
- * <p>In fact, we can assume that both \(a\) and \(\omega\) are positive and
- * compute them directly, knowing that \(A = a^2 \omega^2\) and that
- * \(B = -\omega^2\). The complete algorithm is therefore:</p>
- *
- * For each \(t_i\) from \(t_1\) to \(t_{n-1}\), compute:
- * \[ f(t_i) \]
- * \[ f'(t_i) = \frac{f (t_{i+1}) - f(t_{i-1})}{t_{i+1} - t_{i-1}} \]
- * \[ x_i = t_i - t_1 \]
- * \[ y_i = \int_{t_1}^{t_i} f^2(t) dt \]
- * \[ z_i = \int_{t_1}^{t_i} f'^2(t) dt \]
- * and update the sums:
- * \[ \sum x_i x_i, \sum y_i y_i, \sum x_i y_i, \sum x_i z_i, \sum y_i z_i \]
- *
- * Then:
- * \[
- * a = \sqrt{\frac{\sum y_i y_i \sum x_i z_i - \sum x_i y_i \sum y_i z_i }
- * {\sum x_i y_i \sum x_i z_i - \sum x_i x_i \sum y_i z_i }}
- * \]
- * \[
- * \omega = \sqrt{\frac{\sum x_i y_i \sum x_i z_i - \sum x_i x_i \sum y_i z_i}
- * {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i}}
- * \]
- *
- * <p>Once we know \(\omega\) we can compute:
- * \[
- * fc = \omega f(t) \cos(\omega t) - f'(t) \sin(\omega t)
- * \]
- * \[
- * fs = \omega f(t) \sin(\omega t) + f'(t) \cos(\omega t)
- * \]
- * </p>
- *
- * <p>It appears that \(fc = a \omega \cos(\phi)\) and
- * \(fs = -a \omega \sin(\phi)\), so we can use these
- * expressions to compute \(\phi\). The best estimate over the sample is
- * given by averaging these expressions.
- * </p>
- *
- * <p>Since integrals and means are involved in the preceding
- * estimations, these operations run in \(O(n)\) time, where \(n\) is the
- * number of measurements.</p>
- */
- public static class ParameterGuesser {
- /** Amplitude. */
- private final double a;
- /** Angular frequency. */
- private final double omega;
- /** Phase. */
- private final double phi;
- /**
- * Simple constructor.
- *
- * @param observations Sampled observations.
- * @throws MathIllegalArgumentException if the sample is too short.
- * @throws MathIllegalArgumentException if the abscissa range is zero.
- * @throws MathIllegalStateException when the guessing procedure cannot
- * produce sensible results.
- */
- public ParameterGuesser(Collection<WeightedObservedPoint> observations) {
- if (observations.size() < 4) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE,
- observations.size(), 4, true);
- }
- final WeightedObservedPoint[] sorted
- = sortObservations(observations).toArray(new WeightedObservedPoint[0]);
- final double[] aOmega = guessAOmega(sorted);
- a = aOmega[0];
- omega = aOmega[1];
- phi = guessPhi(sorted);
- }
- /**
- * Gets an estimation of the parameters.
- *
- * @return the guessed parameters, in the following order:
- * <ul>
- * <li>Amplitude</li>
- * <li>Angular frequency</li>
- * <li>Phase</li>
- * </ul>
- */
- public double[] guess() {
- return new double[] { a, omega, phi };
- }
- /**
- * Sort the observations with respect to the abscissa.
- *
- * @param unsorted Input observations.
- * @return the input observations, sorted.
- */
- private List<WeightedObservedPoint> sortObservations(Collection<WeightedObservedPoint> unsorted) {
- final List<WeightedObservedPoint> observations = new ArrayList<>(unsorted);
- // Since the samples are almost always already sorted, this
- // method is implemented as an insertion sort that reorders the
- // elements in place. Insertion sort is very efficient in this case.
- WeightedObservedPoint curr = observations.get(0);
- final int len = observations.size();
- for (int j = 1; j < len; j++) {
- WeightedObservedPoint prec = curr;
- curr = observations.get(j);
- if (curr.getX() < prec.getX()) {
- // the current element should be inserted closer to the beginning
- int i = j - 1;
- WeightedObservedPoint mI = observations.get(i);
- while ((i >= 0) && (curr.getX() < mI.getX())) {
- observations.set(i + 1, mI);
- if (i != 0) {
- mI = observations.get(i - 1);
- }
- --i;
- }
- observations.set(i + 1, curr);
- curr = observations.get(j);
- }
- }
- return observations;
- }
- /**
- * Estimate a first guess of the amplitude and angular frequency.
- *
- * @param observations Observations, sorted w.r.t. abscissa.
- * @throws MathIllegalArgumentException if the abscissa range is zero.
- * @throws MathIllegalStateException when the guessing procedure cannot
- * produce sensible results.
- * @return the guessed amplitude (at index 0) and circular frequency
- * (at index 1).
- */
- private double[] guessAOmega(WeightedObservedPoint[] observations) {
- final double[] aOmega = new double[2];
- // initialize the sums for the linear model between the two integrals
- double sx2 = 0;
- double sy2 = 0;
- double sxy = 0;
- double sxz = 0;
- double syz = 0;
- double currentX = observations[0].getX();
- double currentY = observations[0].getY();
- double f2Integral = 0;
- double fPrime2Integral = 0;
- final double startX = currentX;
- for (int i = 1; i < observations.length; ++i) {
- // one step forward
- final double previousX = currentX;
- final double previousY = currentY;
- currentX = observations[i].getX();
- currentY = observations[i].getY();
- // update the integrals of f<sup>2</sup> and f'<sup>2</sup>
- // considering a linear model for f (and therefore constant f')
- final double dx = currentX - previousX;
- final double dy = currentY - previousY;
- final double f2StepIntegral =
- dx * (previousY * previousY + previousY * currentY + currentY * currentY) / 3;
- final double fPrime2StepIntegral = dy * dy / dx;
- final double x = currentX - startX;
- f2Integral += f2StepIntegral;
- fPrime2Integral += fPrime2StepIntegral;
- sx2 += x * x;
- sy2 += f2Integral * f2Integral;
- sxy += x * f2Integral;
- sxz += x * fPrime2Integral;
- syz += f2Integral * fPrime2Integral;
- }
- // compute the amplitude and pulsation coefficients
- double c1 = sy2 * sxz - sxy * syz;
- double c2 = sxy * sxz - sx2 * syz;
- double c3 = sx2 * sy2 - sxy * sxy;
- if ((c1 / c2 < 0) || (c2 / c3 < 0)) {
- final int last = observations.length - 1;
- // Range of the observations, assuming that the
- // observations are sorted.
- final double xRange = observations[last].getX() - observations[0].getX();
- if (xRange == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.ZERO_NOT_ALLOWED);
- }
- aOmega[1] = 2 * Math.PI / xRange;
- double yMin = Double.POSITIVE_INFINITY;
- double yMax = Double.NEGATIVE_INFINITY;
- for (int i = 1; i < observations.length; ++i) {
- final double y = observations[i].getY();
- if (y < yMin) {
- yMin = y;
- }
- if (y > yMax) {
- yMax = y;
- }
- }
- aOmega[0] = 0.5 * (yMax - yMin);
- } else {
- if (c2 == 0) {
- // In some ill-conditioned cases (cf. MATH-844), the guesser
- // procedure cannot produce sensible results.
- throw new MathIllegalStateException(LocalizedCoreFormats.ZERO_DENOMINATOR);
- }
- aOmega[0] = FastMath.sqrt(c1 / c2);
- aOmega[1] = FastMath.sqrt(c2 / c3);
- }
- return aOmega;
- }
- /**
- * Estimate a first guess of the phase.
- *
- * @param observations Observations, sorted w.r.t. abscissa.
- * @return the guessed phase.
- */
- private double guessPhi(WeightedObservedPoint[] observations) {
- // initialize the means
- double fcMean = 0;
- double fsMean = 0;
- double currentX = observations[0].getX();
- double currentY = observations[0].getY();
- for (int i = 1; i < observations.length; ++i) {
- // one step forward
- final double previousX = currentX;
- final double previousY = currentY;
- currentX = observations[i].getX();
- currentY = observations[i].getY();
- final double currentYPrime = (currentY - previousY) / (currentX - previousX);
- double omegaX = omega * currentX;
- SinCos sc = FastMath.sinCos(omegaX);
- fcMean += omega * currentY * sc.cos() - currentYPrime * sc.sin();
- fsMean += omega * currentY * sc.sin() + currentYPrime * sc.cos();
- }
- return FastMath.atan2(-fsMean, fcMean);
- }
- }
- }