GaussianCurveFitter.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.fitting;
- import java.util.ArrayList;
- import java.util.Collection;
- import java.util.Comparator;
- import java.util.List;
- import org.hipparchus.analysis.function.Gaussian;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.linear.DiagonalMatrix;
- import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresBuilder;
- import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * Fits points to a {@link
- * org.hipparchus.analysis.function.Gaussian.Parametric Gaussian}
- * function.
- * <br>
- * The {@link #withStartPoint(double[]) initial guess values} must be passed
- * in the following order:
- * <ul>
- * <li>Normalization</li>
- * <li>Mean</li>
- * <li>Sigma</li>
- * </ul>
- * The optimal values will be returned in the same order.
- *
- * <p>
- * Usage example:
- * <pre>
- * WeightedObservedPoints obs = new WeightedObservedPoints();
- * obs.add(4.0254623, 531026.0);
- * obs.add(4.03128248, 984167.0);
- * obs.add(4.03839603, 1887233.0);
- * obs.add(4.04421621, 2687152.0);
- * obs.add(4.05132976, 3461228.0);
- * obs.add(4.05326982, 3580526.0);
- * obs.add(4.05779662, 3439750.0);
- * obs.add(4.0636168, 2877648.0);
- * obs.add(4.06943698, 2175960.0);
- * obs.add(4.07525716, 1447024.0);
- * obs.add(4.08237071, 717104.0);
- * obs.add(4.08366408, 620014.0);
- * double[] parameters = GaussianCurveFitter.create().fit(obs.toList());
- * </pre>
- *
- */
- public class GaussianCurveFitter extends AbstractCurveFitter {
- /** Parametric function to be fitted. */
- private static final Gaussian.Parametric FUNCTION = new Gaussian.Parametric() {
- /** {@inheritDoc} */
- @Override
- public double value(double x, double ... p) {
- double v = Double.POSITIVE_INFINITY;
- try {
- v = super.value(x, p);
- } catch (MathIllegalArgumentException e) { // NOPMD
- // Do nothing.
- }
- return v;
- }
- /** {@inheritDoc} */
- @Override
- public double[] gradient(double x, double ... p) {
- double[] v = { Double.POSITIVE_INFINITY,
- Double.POSITIVE_INFINITY,
- Double.POSITIVE_INFINITY };
- try {
- v = super.gradient(x, p);
- } catch (MathIllegalArgumentException e) { // NOPMD
- // Do nothing.
- }
- return v;
- }
- };
- /** Initial guess. */
- private final double[] initialGuess;
- /** Maximum number of iterations of the optimization algorithm. */
- private final int maxIter;
- /**
- * Constructor used by the factory methods.
- *
- * @param initialGuess Initial guess. If set to {@code null}, the initial guess
- * will be estimated using the {@link ParameterGuesser}.
- * @param maxIter Maximum number of iterations of the optimization algorithm.
- */
- private GaussianCurveFitter(double[] initialGuess, int maxIter) {
- this.initialGuess = initialGuess == null ? null : initialGuess.clone();
- this.maxIter = maxIter;
- }
- /**
- * Creates a default curve fitter.
- * The initial guess for the parameters will be {@link ParameterGuesser}
- * computed automatically, and the maximum number of iterations of the
- * optimization algorithm is set to {@link Integer#MAX_VALUE}.
- *
- * @return a curve fitter.
- *
- * @see #withStartPoint(double[])
- * @see #withMaxIterations(int)
- */
- public static GaussianCurveFitter create() {
- return new GaussianCurveFitter(null, Integer.MAX_VALUE);
- }
- /**
- * Configure the start point (initial guess).
- * @param newStart new start point (initial guess)
- * @return a new instance.
- */
- public GaussianCurveFitter withStartPoint(double[] newStart) {
- return new GaussianCurveFitter(newStart.clone(),
- maxIter);
- }
- /**
- * Configure the maximum number of iterations.
- * @param newMaxIter maximum number of iterations
- * @return a new instance.
- */
- public GaussianCurveFitter withMaxIterations(int newMaxIter) {
- return new GaussianCurveFitter(initialGuess,
- newMaxIter);
- }
- /** {@inheritDoc} */
- @Override
- protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) {
- // Prepare least-squares problem.
- final int len = observations.size();
- final double[] target = new double[len];
- final double[] weights = new double[len];
- int i = 0;
- for (WeightedObservedPoint obs : observations) {
- target[i] = obs.getY();
- weights[i] = obs.getWeight();
- ++i;
- }
- final AbstractCurveFitter.TheoreticalValuesFunction model =
- new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations);
- final double[] startPoint = initialGuess != null ?
- initialGuess :
- // Compute estimation.
- new ParameterGuesser(observations).guess();
- // Return a new least squares problem set up to fit a Gaussian curve to the
- // observed points.
- return new LeastSquaresBuilder().
- maxEvaluations(Integer.MAX_VALUE).
- maxIterations(maxIter).
- start(startPoint).
- target(target).
- weight(new DiagonalMatrix(weights)).
- model(model.getModelFunction(), model.getModelFunctionJacobian()).
- build();
- }
- /**
- * Guesses the parameters {@code norm}, {@code mean}, and {@code sigma}
- * of a {@link org.hipparchus.analysis.function.Gaussian.Parametric}
- * based on the specified observed points.
- */
- public static class ParameterGuesser {
- /** Normalization factor. */
- private final double norm;
- /** Mean. */
- private final double mean;
- /** Standard deviation. */
- private final double sigma;
- /**
- * Constructs instance with the specified observed points.
- *
- * @param observations Observed points from which to guess the
- * parameters of the Gaussian.
- * @throws org.hipparchus.exception.NullArgumentException if {@code observations} is
- * {@code null}.
- * @throws MathIllegalArgumentException if there are less than 3
- * observations.
- */
- public ParameterGuesser(Collection<WeightedObservedPoint> observations) {
- MathUtils.checkNotNull(observations);
- if (observations.size() < 3) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
- observations.size(), 3);
- }
- final List<WeightedObservedPoint> sorted = sortObservations(observations);
- final double[] params = basicGuess(sorted.toArray(new WeightedObservedPoint[0]));
- norm = params[0];
- mean = params[1];
- sigma = params[2];
- }
- /**
- * Gets an estimation of the parameters.
- *
- * @return the guessed parameters, in the following order:
- * <ul>
- * <li>Normalization factor</li>
- * <li>Mean</li>
- * <li>Standard deviation</li>
- * </ul>
- */
- public double[] guess() {
- return new double[] { norm, mean, sigma };
- }
- /**
- * Sort the observations.
- *
- * @param unsorted Input observations.
- * @return the input observations, sorted.
- */
- private List<WeightedObservedPoint> sortObservations(Collection<WeightedObservedPoint> unsorted) {
- final List<WeightedObservedPoint> observations = new ArrayList<>(unsorted);
- final Comparator<WeightedObservedPoint> cmp = new Comparator<WeightedObservedPoint>() {
- /** {@inheritDoc} */
- @Override
- public int compare(WeightedObservedPoint p1,
- WeightedObservedPoint p2) {
- if (p1 == null && p2 == null) {
- return 0;
- }
- if (p1 == null) {
- return -1;
- }
- if (p2 == null) {
- return 1;
- }
- int comp = Double.compare(p1.getX(), p2.getX());
- if (comp != 0) {
- return comp;
- }
- comp = Double.compare(p1.getY(), p2.getY());
- if (comp != 0) {
- return comp;
- }
- comp = Double.compare(p1.getWeight(), p2.getWeight());
- if (comp != 0) {
- return comp;
- }
- return 0;
- }
- };
- observations.sort(cmp);
- return observations;
- }
- /**
- * Guesses the parameters based on the specified observed points.
- *
- * @param points Observed points, sorted.
- * @return the guessed parameters (normalization factor, mean and
- * sigma).
- */
- private double[] basicGuess(WeightedObservedPoint[] points) {
- final int maxYIdx = findMaxY(points);
- final double n = points[maxYIdx].getY();
- final double m = points[maxYIdx].getX();
- double fwhmApprox;
- try {
- final double halfY = n + ((m - n) / 2);
- final double fwhmX1 = interpolateXAtY(points, maxYIdx, -1, halfY);
- final double fwhmX2 = interpolateXAtY(points, maxYIdx, 1, halfY);
- fwhmApprox = fwhmX2 - fwhmX1;
- } catch (MathIllegalArgumentException e) {
- // TODO: Exceptions should not be used for flow control.
- fwhmApprox = points[points.length - 1].getX() - points[0].getX();
- }
- final double s = fwhmApprox / (2 * FastMath.sqrt(2 * FastMath.log(2)));
- return new double[] { n, m, s };
- }
- /**
- * Finds index of point in specified points with the largest Y.
- *
- * @param points Points to search.
- * @return the index in specified points array.
- */
- private int findMaxY(WeightedObservedPoint[] points) {
- int maxYIdx = 0;
- for (int i = 1; i < points.length; i++) {
- if (points[i].getY() > points[maxYIdx].getY()) {
- maxYIdx = i;
- }
- }
- return maxYIdx;
- }
- /**
- * Interpolates using the specified points to determine X at the
- * specified Y.
- *
- * @param points Points to use for interpolation.
- * @param startIdx Index within points from which to start the search for
- * interpolation bounds points.
- * @param idxStep Index step for searching interpolation bounds points.
- * @param y Y value for which X should be determined.
- * @return the value of X for the specified Y.
- * @throws MathIllegalArgumentException if {@code idxStep} is 0.
- * @throws MathIllegalArgumentException if specified {@code y} is not within the
- * range of the specified {@code points}.
- */
- private double interpolateXAtY(WeightedObservedPoint[] points,
- int startIdx,
- int idxStep,
- double y)
- throws MathIllegalArgumentException {
- if (idxStep == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.ZERO_NOT_ALLOWED);
- }
- final WeightedObservedPoint[] twoPoints
- = getInterpolationPointsForY(points, startIdx, idxStep, y);
- final WeightedObservedPoint p1 = twoPoints[0];
- final WeightedObservedPoint p2 = twoPoints[1];
- if (p1.getY() == y) {
- return p1.getX();
- }
- if (p2.getY() == y) {
- return p2.getX();
- }
- return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) /
- (p2.getY() - p1.getY()));
- }
- /**
- * Gets the two bounding interpolation points from the specified points
- * suitable for determining X at the specified Y.
- *
- * @param points Points to use for interpolation.
- * @param startIdx Index within points from which to start search for
- * interpolation bounds points.
- * @param idxStep Index step for search for interpolation bounds points.
- * @param y Y value for which X should be determined.
- * @return the array containing two points suitable for determining X at
- * the specified Y.
- * @throws MathIllegalArgumentException if {@code idxStep} is 0.
- * @throws MathIllegalArgumentException if specified {@code y} is not within the
- * range of the specified {@code points}.
- */
- private WeightedObservedPoint[] getInterpolationPointsForY(WeightedObservedPoint[] points,
- int startIdx,
- int idxStep,
- double y)
- throws MathIllegalArgumentException {
- if (idxStep == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.ZERO_NOT_ALLOWED);
- }
- for (int i = startIdx;
- idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length;
- i += idxStep) {
- final WeightedObservedPoint p1 = points[i];
- final WeightedObservedPoint p2 = points[i + idxStep];
- if (isBetween(y, p1.getY(), p2.getY())) {
- if (idxStep < 0) {
- return new WeightedObservedPoint[] { p2, p1 };
- } else {
- return new WeightedObservedPoint[] { p1, p2 };
- }
- }
- }
- // Boundaries are replaced by dummy values because the raised
- // exception is caught and the message never displayed.
- // TODO: Exceptions should not be used for flow control.
- throw new MathIllegalArgumentException(LocalizedCoreFormats.OUT_OF_RANGE_SIMPLE,
- y, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);
- }
- /**
- * Determines whether a value is between two other values.
- *
- * @param value Value to test whether it is between {@code boundary1}
- * and {@code boundary2}.
- * @param boundary1 One end of the range.
- * @param boundary2 Other end of the range.
- * @return {@code true} if {@code value} is between {@code boundary1} and
- * {@code boundary2} (inclusive), {@code false} otherwise.
- */
- private boolean isBetween(double value,
- double boundary1,
- double boundary2) {
- return (value >= boundary1 && value <= boundary2) ||
- (value >= boundary2 && value <= boundary1);
- }
- }
- }