AbstractCurveFitter.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This is not the original file distributed by the Apache Software Foundation
* It has been modified by the Hipparchus project
*/
package org.hipparchus.fitting;
import java.util.Collection;
import org.hipparchus.analysis.MultivariateMatrixFunction;
import org.hipparchus.analysis.MultivariateVectorFunction;
import org.hipparchus.analysis.ParametricUnivariateFunction;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresOptimizer;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LevenbergMarquardtOptimizer;
/**
* Base class that contains common code for fitting parametric univariate
* real functions <code>y = f(p<sub>i</sub>;x)</code>, where {@code x} is
* the independent variable and the <code>p<sub>i</sub></code> are the
* <em>parameters</em>.
* <br>
* A fitter will find the optimal values of the parameters by
* <em>fitting</em> the curve so it remains very close to a set of
* {@code N} observed points <code>(x<sub>k</sub>, y<sub>k</sub>)</code>,
* {@code 0 <= k < N}.
* <br>
* An algorithm usually performs the fit by finding the parameter
* values that minimizes the objective function
* <pre><code>
* ∑y<sub>k</sub> - f(x<sub>k</sub>)<sup>2</sup>,
* </code></pre>
* which is actually a least-squares problem.
* This class contains boilerplate code for calling the
* {@link #fit(Collection)} method for obtaining the parameters.
* The problem setup, such as the choice of optimization algorithm
* for fitting a specific function is delegated to subclasses.
*
*/
public abstract class AbstractCurveFitter {
/** Empty constructor.
* <p>
* This constructor is not strictly necessary, but it prevents spurious
* javadoc warnings with JDK 18 and later.
* </p>
* @since 3.0
*/
public AbstractCurveFitter() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy
// nothing to do
}
/**
* Fits a curve.
* This method computes the coefficients of the curve that best
* fit the sample of observed points.
*
* @param points Observations.
* @return the fitted parameters.
*/
public double[] fit(Collection<WeightedObservedPoint> points) {
// Perform the fit.
return getOptimizer().optimize(getProblem(points)).getPoint().toArray();
}
/**
* Creates an optimizer set up to fit the appropriate curve.
* <p>
* The default implementation uses a {@link LevenbergMarquardtOptimizer
* Levenberg-Marquardt} optimizer.
* </p>
* @return the optimizer to use for fitting the curve to the
* given {@code points}.
*/
protected LeastSquaresOptimizer getOptimizer() {
return new LevenbergMarquardtOptimizer();
}
/**
* Creates a least squares problem corresponding to the appropriate curve.
*
* @param points Sample points.
* @return the least squares problem to use for fitting the curve to the
* given {@code points}.
*/
protected abstract LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> points);
/**
* Vector function for computing function theoretical values.
*/
protected static class TheoreticalValuesFunction {
/** Function to fit. */
private final ParametricUnivariateFunction f;
/** Observations. */
private final double[] points;
/** Simple constructor.
* @param f function to fit.
* @param observations Observations.
*/
public TheoreticalValuesFunction(final ParametricUnivariateFunction f,
final Collection<WeightedObservedPoint> observations) {
this.f = f;
final int len = observations.size();
this.points = new double[len];
int i = 0;
for (WeightedObservedPoint obs : observations) {
this.points[i++] = obs.getX();
}
}
/** Get model function value.
* @return the model function value
*/
public MultivariateVectorFunction getModelFunction() {
return new MultivariateVectorFunction() {
/** {@inheritDoc} */
@Override
public double[] value(double[] p) {
final int len = points.length;
final double[] values = new double[len];
for (int i = 0; i < len; i++) {
values[i] = f.value(points[i], p);
}
return values;
}
};
}
/** Get model function Jacobian.
* @return the model function Jacobian
*/
public MultivariateMatrixFunction getModelFunctionJacobian() {
return new MultivariateMatrixFunction() {
/** {@inheritDoc} */
@Override
public double[][] value(double[] p) {
final int len = points.length;
final double[][] jacobian = new double[len][];
for (int i = 0; i < len; i++) {
jacobian[i] = f.gradient(points[i], p);
}
return jacobian;
}
};
}
}
}