FastCosineTransformer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.transform;
- import java.io.Serializable;
- import org.hipparchus.analysis.FunctionUtils;
- import org.hipparchus.analysis.UnivariateFunction;
- import org.hipparchus.complex.Complex;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.ArithmeticUtils;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.SinCos;
- /**
- * Implements the Fast Cosine Transform for transformation of one-dimensional
- * real data sets. For reference, see James S. Walker, <em>Fast Fourier
- * Transforms</em>, chapter 3 (ISBN 0849371635).
- * <p>
- * There are several variants of the discrete cosine transform. The present
- * implementation corresponds to DCT-I, with various normalization conventions,
- * which are specified by the parameter {@link DctNormalization}.
- * <p>
- * DCT-I is equivalent to DFT of an <em>even extension</em> of the data series.
- * More precisely, if x<sub>0</sub>, …, x<sub>N-1</sub> is the data set
- * to be cosine transformed, the extended data set
- * x<sub>0</sub><sup>#</sup>, …, x<sub>2N-3</sub><sup>#</sup>
- * is defined as follows
- * <ul>
- * <li>x<sub>k</sub><sup>#</sup> = x<sub>k</sub> if 0 ≤ k < N,</li>
- * <li>x<sub>k</sub><sup>#</sup> = x<sub>2N-2-k</sub>
- * if N ≤ k < 2N - 2.</li>
- * </ul>
- * <p>
- * Then, the standard DCT-I y<sub>0</sub>, …, y<sub>N-1</sub> of the real
- * data set x<sub>0</sub>, …, x<sub>N-1</sub> is equal to <em>half</em>
- * of the N first elements of the DFT of the extended data set
- * x<sub>0</sub><sup>#</sup>, …, x<sub>2N-3</sub><sup>#</sup>
- * <br>
- * y<sub>n</sub> = (1 / 2) ∑<sub>k=0</sub><sup>2N-3</sup>
- * x<sub>k</sub><sup>#</sup> exp[-2πi nk / (2N - 2)]
- * k = 0, …, N-1.
- * <p>
- * The present implementation of the discrete cosine transform as a fast cosine
- * transform requires the length of the data set to be a power of two plus one
- * (N = 2<sup>n</sup> + 1). Besides, it implicitly assumes
- * that the sampled function is even.
- *
- */
- public class FastCosineTransformer implements RealTransformer, Serializable {
- /** Serializable version identifier. */
- static final long serialVersionUID = 20120212L;
- /** The type of DCT to be performed. */
- private final DctNormalization normalization;
- /**
- * Creates a new instance of this class, with various normalization
- * conventions.
- *
- * @param normalization the type of normalization to be applied to the
- * transformed data
- */
- public FastCosineTransformer(final DctNormalization normalization) {
- this.normalization = normalization;
- }
- /**
- * {@inheritDoc}
- *
- * @throws MathIllegalArgumentException if the length of the data array is
- * not a power of two plus one
- */
- @Override
- public double[] transform(final double[] f, final TransformType type)
- throws MathIllegalArgumentException {
- if (type == TransformType.FORWARD) {
- if (normalization == DctNormalization.ORTHOGONAL_DCT_I) {
- final double s = FastMath.sqrt(2.0 / (f.length - 1));
- return TransformUtils.scaleArray(fct(f), s);
- }
- return fct(f);
- }
- final double s2 = 2.0 / (f.length - 1);
- final double s1;
- if (normalization == DctNormalization.ORTHOGONAL_DCT_I) {
- s1 = FastMath.sqrt(s2);
- } else {
- s1 = s2;
- }
- return TransformUtils.scaleArray(fct(f), s1);
- }
- /**
- * {@inheritDoc}
- *
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if the lower bound is greater than, or equal to the upper bound
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if the number of sample points is negative
- * @throws MathIllegalArgumentException if the number of sample points is
- * not a power of two plus one
- */
- @Override
- public double[] transform(final UnivariateFunction f,
- final double min, final double max, final int n,
- final TransformType type) throws MathIllegalArgumentException {
- final double[] data = FunctionUtils.sample(f, min, max, n);
- return transform(data, type);
- }
- /**
- * Perform the FCT algorithm (including inverse).
- *
- * @param f the real data array to be transformed
- * @return the real transformed array
- * @throws MathIllegalArgumentException if the length of the data array is
- * not a power of two plus one
- */
- protected double[] fct(double[] f)
- throws MathIllegalArgumentException {
- final double[] transformed = new double[f.length];
- final int n = f.length - 1;
- if (!ArithmeticUtils.isPowerOfTwo(n)) {
- throw new MathIllegalArgumentException(LocalizedFFTFormats.NOT_POWER_OF_TWO_PLUS_ONE,
- f.length);
- }
- if (n == 1) { // trivial case
- transformed[0] = 0.5 * (f[0] + f[1]);
- transformed[1] = 0.5 * (f[0] - f[1]);
- return transformed;
- }
- // construct a new array and perform FFT on it
- final double[] x = new double[n];
- x[0] = 0.5 * (f[0] + f[n]);
- x[n >> 1] = f[n >> 1];
- // temporary variable for transformed[1]
- double t1 = 0.5 * (f[0] - f[n]);
- for (int i = 1; i < (n >> 1); i++) {
- final SinCos sc = FastMath.sinCos(i * FastMath.PI / n);
- final double a = 0.5 * (f[i] + f[n - i]);
- final double b = sc.sin() * (f[i] - f[n - i]);
- final double c = sc.cos() * (f[i] - f[n - i]);
- x[i] = a - b;
- x[n - i] = a + b;
- t1 += c;
- }
- FastFourierTransformer transformer;
- transformer = new FastFourierTransformer(DftNormalization.STANDARD);
- Complex[] y = transformer.transform(x, TransformType.FORWARD);
- // reconstruct the FCT result for the original array
- transformed[0] = y[0].getReal();
- transformed[1] = t1;
- for (int i = 1; i < (n >> 1); i++) {
- transformed[2 * i] = y[i].getReal();
- transformed[2 * i + 1] = transformed[2 * i - 1] - y[i].getImaginary();
- }
- transformed[n] = y[n >> 1].getReal();
- return transformed;
- }
- }