UnscentedTransformProvider.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.util;
- import org.hipparchus.linear.ArrayRealVector;
- import org.hipparchus.linear.MatrixUtils;
- import org.hipparchus.linear.RealMatrix;
- import org.hipparchus.linear.RealVector;
- /**
- * Provider for unscented transform.
- * @since 2.2
- */
- public interface UnscentedTransformProvider {
- /**
- * Perform the unscented transform from a state and its covariance.
- * @param state process state
- * @param covariance covariance associated with the process state
- * @return an array containing the sigma points of the unscented transform
- */
- RealVector[] unscentedTransform(RealVector state, RealMatrix covariance);
- /**
- * Computes a weighted mean state from a given set of sigma points.
- * <p>
- * This method can be used for computing both the mean state and the mean measurement
- * in an Unscented Kalman filter.
- * </p>
- * <p>
- * It corresponds to Equation 17 of "Wan, E. A., & Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation"
- * </p>
- * @param sigmaPoints input samples
- * @return weighted mean state
- */
- default RealVector getUnscentedMeanState(RealVector[] sigmaPoints) {
- // Sigma point dimension
- final int sigmaPointDimension = sigmaPoints[0].getDimension();
- // Compute weighted mean
- // ---------------------
- RealVector weightedMean = new ArrayRealVector(sigmaPointDimension);
- // Compute the weight coefficients wm
- final RealVector wm = getWm();
- // Weight each sigma point and sum them
- for (int i = 0; i < sigmaPoints.length; i++) {
- weightedMean = weightedMean.add(sigmaPoints[i].mapMultiply(wm.getEntry(i)));
- }
- return weightedMean;
- }
- /** Computes the unscented covariance matrix from a weighted mean state and a set of sigma points.
- * <p>
- * This method can be used for computing both the predicted state
- * covariance matrix and the innovation covariance matrix in an Unscented Kalman filter.
- * </p>
- * <p>
- * It corresponds to Equation 18 of "Wan, E. A., & Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation"
- * </p>
- * @param sigmaPoints input sigma points
- * @param meanState weighted mean state
- * @return the unscented covariance matrix
- */
- default RealMatrix getUnscentedCovariance(RealVector[] sigmaPoints, RealVector meanState) {
- // State dimension
- final int stateDimension = meanState.getDimension();
- // Compute covariance matrix
- // -------------------------
- RealMatrix covarianceMatrix = MatrixUtils.createRealMatrix(stateDimension, stateDimension);
- // Compute the weight coefficients wc
- final RealVector wc = getWc();
- // Reconstruct the covariance
- for (int i = 0; i < sigmaPoints.length; i++) {
- final RealMatrix diff = MatrixUtils.createColumnRealMatrix(sigmaPoints[i].subtract(meanState).toArray());
- covarianceMatrix = covarianceMatrix.add(diff.multiplyTransposed(diff).scalarMultiply(wc.getEntry(i)));
- }
- return covarianceMatrix;
- }
- /**
- * Perform the inverse unscented transform from an array of sigma points.
- * @param sigmaPoints array containing the sigma points of the unscented transform
- * @return mean state and associated covariance
- */
- default Pair<RealVector, RealMatrix> inverseUnscentedTransform(RealVector[] sigmaPoints) {
- // Mean state
- final RealVector meanState = getUnscentedMeanState(sigmaPoints);
- // Return state and covariance
- return new Pair<>(meanState, getUnscentedCovariance(sigmaPoints, meanState));
- }
- /**
- * Get the covariance weights.
- * @return the covariance weights
- */
- RealVector getWc();
- /**
- * Get the mean weights.
- * @return the mean weights
- */
- RealVector getWm();
- }