MerweUnscentedTransform.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.util;
import org.hipparchus.linear.ArrayRealVector;
import org.hipparchus.linear.RealVector;
/**
* Unscented transform as defined by Merwe and Wan.
* <p>
* The unscented transform uses three parameters: alpha, beta and kappa.
* Alpha determines the spread of the sigma points around the process state,
* kappa is a secondary scaling parameter, and beta is used to incorporate
* prior knowledge of the distribution of the process state.
* </p>
* @see "E. A. Wan and R. Van der Merwe, The unscented Kalman filter for nonlinear estimation,
* in Proc. Symp. Adaptive Syst. Signal Process., Commun. Contr., Lake Louise, AB, Canada, Oct. 2000."
* @since 2.2
*/
public class MerweUnscentedTransform extends AbstractUnscentedTransform {
/** Default value for alpha (0.5, see reference). */
public static final double DEFAULT_ALPHA = 0.5;
/** Default value for beta (2.0, see reference). */
public static final double DEFAULT_BETA = 2.0;
/** Default value for kappa, (0.0, see reference). */
public static final double DEFAULT_KAPPA = 0.0;
/** Weights for covariance matrix. */
private final RealVector wc;
/** Weights for mean state. */
private final RealVector wm;
/** Factor applied to the covariance matrix during the unscented transform (lambda + process state size). */
private final double factor;
/**
* Default constructor.
* <p>
* This constructor uses default values for alpha, beta, and kappa.
* </p>
* @param stateDim the dimension of the state
* @see #DEFAULT_ALPHA
* @see #DEFAULT_BETA
* @see #DEFAULT_KAPPA
* @see #MerweUnscentedTransform(int, double, double, double)
*/
public MerweUnscentedTransform(final int stateDim) {
this(stateDim, DEFAULT_ALPHA, DEFAULT_BETA, DEFAULT_KAPPA);
}
/**
* Simple constructor.
* @param stateDim the dimension of the state
* @param alpha scaling control parameter
* (determines the spread of the sigma points around the process state)
* @param beta free parameter
* (used to incorporate prior knowledge of the distribution of the process state)
* @param kappa secondary scaling factor
* (usually set to 0.0)
*/
public MerweUnscentedTransform(final int stateDim, final double alpha,
final double beta, final double kappa) {
// Call super constructor
super(stateDim);
// lambda = alpha² + (n + kappa) - n (see Eq. 15)
final double lambda = alpha * alpha * (stateDim + kappa) - stateDim;
// Initialize multiplication factor for covariance matrix
this.factor = stateDim + lambda;
// Initialize vectors weights
wm = new ArrayRealVector(2 * stateDim + 1);
wc = new ArrayRealVector(2 * stateDim + 1);
// Computation of unscented kalman filter weights (See Eq. 15)
wm.setEntry(0, lambda / factor);
wc.setEntry(0, lambda / factor + (1.0 - alpha * alpha + beta));
final double w = 1.0 / (2.0 * factor);
for (int i = 1; i <= 2 * stateDim; i++) {
wm.setEntry(i, w);
wc.setEntry(i, w);
}
}
/** {@inheritDoc} */
@Override
public RealVector getWc() {
return wc;
}
/** {@inheritDoc} */
@Override
public RealVector getWm() {
return wm;
}
/** {@inheritDoc} */
@Override
protected double getMultiplicationFactor() {
return factor;
}
}