FieldContinuedFraction.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.util;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalStateException;
- /**
- * Provides a generic means to evaluate continued fractions. Subclasses simply
- * provided the a and b coefficients to evaluate the continued fraction.
- * <p>
- * References:
- * <ul>
- * <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html">
- * Continued Fraction</a></li>
- * </ul>
- *
- */
- public abstract class FieldContinuedFraction {
- /** Maximum allowed numerical error. */
- private static final double DEFAULT_EPSILON = 10e-9;
- /**
- * Default constructor.
- */
- protected FieldContinuedFraction() {
- super();
- }
- /**
- * Access the n-th a coefficient of the continued fraction. Since a can be
- * a function of the evaluation point, x, that is passed in as well.
- * @param n the coefficient index to retrieve.
- * @param x the evaluation point.
- * @param <T> type of the field elements.
- * @return the n-th a coefficient.
- */
- public abstract <T extends CalculusFieldElement<T>> T getA(int n, T x);
- /**
- * Access the n-th b coefficient of the continued fraction. Since b can be
- * a function of the evaluation point, x, that is passed in as well.
- * @param n the coefficient index to retrieve.
- * @param x the evaluation point.
- * @param <T> type of the field elements.
- * @return the n-th b coefficient.
- */
- public abstract <T extends CalculusFieldElement<T>> T getB(int n, T x);
- /**
- * Evaluates the continued fraction at the value x.
- * @param x the evaluation point.
- * @param <T> type of the field elements.
- * @return the value of the continued fraction evaluated at x.
- * @throws MathIllegalStateException if the algorithm fails to converge.
- */
- public <T extends CalculusFieldElement<T>> T evaluate(T x) throws MathIllegalStateException {
- return evaluate(x, DEFAULT_EPSILON, Integer.MAX_VALUE);
- }
- /**
- * Evaluates the continued fraction at the value x.
- * @param x the evaluation point.
- * @param epsilon maximum error allowed.
- * @param <T> type of the field elements.
- * @return the value of the continued fraction evaluated at x.
- * @throws MathIllegalStateException if the algorithm fails to converge.
- */
- public <T extends CalculusFieldElement<T>> T evaluate(T x, double epsilon) throws MathIllegalStateException {
- return evaluate(x, epsilon, Integer.MAX_VALUE);
- }
- /**
- * Evaluates the continued fraction at the value x.
- * @param x the evaluation point.
- * @param maxIterations maximum number of convergents
- * @param <T> type of the field elements.
- * @return the value of the continued fraction evaluated at x.
- * @throws MathIllegalStateException if the algorithm fails to converge.
- * @throws MathIllegalStateException if maximal number of iterations is reached
- */
- public <T extends CalculusFieldElement<T>> T evaluate(T x, int maxIterations)
- throws MathIllegalStateException {
- return evaluate(x, DEFAULT_EPSILON, maxIterations);
- }
- /**
- * Evaluates the continued fraction at the value x.
- * <p>
- * The implementation of this method is based on the modified Lentz algorithm as described
- * on page 18 ff. in:
- * </p>
- * <ul>
- * <li>
- * I. J. Thompson, A. R. Barnett. "Coulomb and Bessel Functions of Complex Arguments and Order."
- * <a target="_blank" href="http://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf">
- * http://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf</a>
- * </li>
- * </ul>
- * <p>
- * <b>Note:</b> the implementation uses the terms a<sub>i</sub> and b<sub>i</sub> as defined in
- * <a href="http://mathworld.wolfram.com/ContinuedFraction.html">Continued Fraction @ MathWorld</a>.
- * </p>
- *
- * @param x the evaluation point.
- * @param epsilon maximum error allowed.
- * @param maxIterations maximum number of convergents
- * @param <T> type of the field elements.
- * @return the value of the continued fraction evaluated at x.
- * @throws MathIllegalStateException if the algorithm fails to converge.
- * @throws MathIllegalStateException if maximal number of iterations is reached
- */
- public <T extends CalculusFieldElement<T>> T evaluate(T x, double epsilon, int maxIterations)
- throws MathIllegalStateException {
- final T zero = x.getField().getZero();
- final T one = x.getField().getOne();
- final double small = 1e-50;
- final T smallField = one.multiply(small);
- T hPrev = getA(0, x);
- // use the value of small as epsilon criteria for zero checks
- if (Precision.equals(hPrev.getReal(), 0.0, small)) {
- hPrev = one.multiply(small);
- }
- int n = 1;
- T dPrev = zero;
- T cPrev = hPrev;
- T hN = hPrev;
- while (n < maxIterations) {
- final T a = getA(n, x);
- final T b = getB(n, x);
- T dN = a.add(b.multiply(dPrev));
- if (Precision.equals(dN.getReal(), 0.0, small)) {
- dN = smallField;
- }
- T cN = a.add(b.divide(cPrev));
- if (Precision.equals(cN.getReal(), 0.0, small)) {
- cN = smallField;
- }
- dN = dN.reciprocal();
- final T deltaN = cN.multiply(dN);
- hN = hPrev.multiply(deltaN);
- if (hN.isInfinite()) {
- throw new MathIllegalStateException(LocalizedCoreFormats.CONTINUED_FRACTION_INFINITY_DIVERGENCE, x);
- }
- if (hN.isNaN()) {
- throw new MathIllegalStateException(LocalizedCoreFormats.CONTINUED_FRACTION_NAN_DIVERGENCE, x);
- }
- if (deltaN.subtract(1.0).abs().getReal() < epsilon) {
- break;
- }
- dPrev = dN;
- cPrev = cN;
- hPrev = hN;
- n++;
- }
- if (n >= maxIterations) {
- throw new MathIllegalStateException(LocalizedCoreFormats.NON_CONVERGENT_CONTINUED_FRACTION,
- maxIterations, x);
- }
- return hN;
- }
- }