FastMathCalc.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.util;
- import java.io.PrintStream;
- /**
- * Class used to compute the classical functions tables.
- */
- class FastMathCalc {
- /**
- * 0x40000000 - used to split a double into two parts, both with the low order bits cleared.
- * Equivalent to 2^30.
- */
- private static final long HEX_40000000 = 0x40000000L; // 1073741824L
- /** Factorial table, for Taylor series expansions. 0!, 1!, 2!, ... 19! */
- private static final double[] FACT = {
- +1.0d, // 0
- +1.0d, // 1
- +2.0d, // 2
- +6.0d, // 3
- +24.0d, // 4
- +120.0d, // 5
- +720.0d, // 6
- +5040.0d, // 7
- +40320.0d, // 8
- +362880.0d, // 9
- +3628800.0d, // 10
- +39916800.0d, // 11
- +479001600.0d, // 12
- +6227020800.0d, // 13
- +87178291200.0d, // 14
- +1307674368000.0d, // 15
- +20922789888000.0d, // 16
- +355687428096000.0d, // 17
- +6402373705728000.0d, // 18
- +121645100408832000.0d, // 19
- };
- /** Coefficients for slowLog. */
- private static final double[][] LN_SPLIT_COEF = {
- {2.0, 0.0},
- {0.6666666269302368, 3.9736429850260626E-8},
- {0.3999999761581421, 2.3841857910019882E-8},
- {0.2857142686843872, 1.7029898543501842E-8},
- {0.2222222089767456, 1.3245471311735498E-8},
- {0.1818181574344635, 2.4384203044354907E-8},
- {0.1538461446762085, 9.140260083262505E-9},
- {0.13333332538604736, 9.220590270857665E-9},
- {0.11764700710773468, 1.2393345855018391E-8},
- {0.10526403784751892, 8.251545029714408E-9},
- {0.0952233225107193, 1.2675934823758863E-8},
- {0.08713622391223907, 1.1430250008909141E-8},
- {0.07842259109020233, 2.404307984052299E-9},
- {0.08371849358081818, 1.176342548272881E-8},
- {0.030589580535888672, 1.2958646899018938E-9},
- {0.14982303977012634, 1.225743062930824E-8},
- };
- /** Table start declaration. */
- private static final String TABLE_START_DECL = " {";
- /** Table end declaration. */
- private static final String TABLE_END_DECL = " };";
- /**
- * Private Constructor.
- */
- private FastMathCalc() {
- }
- /** Build the sine and cosine tables.
- * @param SINE_TABLE_A table of the most significant part of the sines
- * @param SINE_TABLE_B table of the least significant part of the sines
- * @param COSINE_TABLE_A table of the most significant part of the cosines
- * @param COSINE_TABLE_B table of the most significant part of the cosines
- * @param SINE_TABLE_LEN length of the tables
- * @param TANGENT_TABLE_A table of the most significant part of the tangents
- * @param TANGENT_TABLE_B table of the most significant part of the tangents
- */
- @SuppressWarnings("unused")
- private static void buildSinCosTables(double[] SINE_TABLE_A, double[] SINE_TABLE_B,
- double[] COSINE_TABLE_A, double[] COSINE_TABLE_B,
- int SINE_TABLE_LEN, double[] TANGENT_TABLE_A, double[] TANGENT_TABLE_B) {
- final double[] result = new double[2];
- /* Use taylor series for 0 <= x <= 6/8 */
- for (int i = 0; i < 7; i++) {
- double x = i / 8.0;
- slowSin(x, result);
- SINE_TABLE_A[i] = result[0];
- SINE_TABLE_B[i] = result[1];
- slowCos(x, result);
- COSINE_TABLE_A[i] = result[0];
- COSINE_TABLE_B[i] = result[1];
- }
- /* Use angle addition formula to complete table to 13/8, just beyond pi/2 */
- for (int i = 7; i < SINE_TABLE_LEN; i++) {
- double[] xs = new double[2];
- double[] ys = new double[2];
- double[] as = new double[2];
- double[] bs = new double[2];
- double[] temps = new double[2];
- if ( (i & 1) == 0) {
- // Even, use double angle
- xs[0] = SINE_TABLE_A[i/2];
- xs[1] = SINE_TABLE_B[i/2];
- ys[0] = COSINE_TABLE_A[i/2];
- ys[1] = COSINE_TABLE_B[i/2];
- /* compute sine */
- splitMult(xs, ys, result);
- SINE_TABLE_A[i] = result[0] * 2.0;
- SINE_TABLE_B[i] = result[1] * 2.0;
- /* Compute cosine */
- splitMult(ys, ys, as);
- splitMult(xs, xs, temps);
- temps[0] = -temps[0];
- temps[1] = -temps[1];
- splitAdd(as, temps, result);
- COSINE_TABLE_A[i] = result[0];
- COSINE_TABLE_B[i] = result[1];
- } else {
- xs[0] = SINE_TABLE_A[i/2];
- xs[1] = SINE_TABLE_B[i/2];
- ys[0] = COSINE_TABLE_A[i/2];
- ys[1] = COSINE_TABLE_B[i/2];
- as[0] = SINE_TABLE_A[i/2+1];
- as[1] = SINE_TABLE_B[i/2+1];
- bs[0] = COSINE_TABLE_A[i/2+1];
- bs[1] = COSINE_TABLE_B[i/2+1];
- /* compute sine */
- splitMult(xs, bs, temps);
- splitMult(ys, as, result);
- splitAdd(result, temps, result);
- SINE_TABLE_A[i] = result[0];
- SINE_TABLE_B[i] = result[1];
- /* Compute cosine */
- splitMult(ys, bs, result);
- splitMult(xs, as, temps);
- temps[0] = -temps[0];
- temps[1] = -temps[1];
- splitAdd(result, temps, result);
- COSINE_TABLE_A[i] = result[0];
- COSINE_TABLE_B[i] = result[1];
- }
- }
- /* Compute tangent = sine/cosine */
- for (int i = 0; i < SINE_TABLE_LEN; i++) {
- double[] xs = new double[2];
- double[] ys = new double[2];
- double[] as = new double[2];
- as[0] = COSINE_TABLE_A[i];
- as[1] = COSINE_TABLE_B[i];
- splitReciprocal(as, ys);
- xs[0] = SINE_TABLE_A[i];
- xs[1] = SINE_TABLE_B[i];
- splitMult(xs, ys, as);
- TANGENT_TABLE_A[i] = as[0];
- TANGENT_TABLE_B[i] = as[1];
- }
- }
- /**
- * For x between 0 and pi/4 compute cosine using Talor series
- * cos(x) = 1 - x^2/2! + x^4/4! ...
- * @param x number from which cosine is requested
- * @param result placeholder where to put the result in extended precision
- * (may be null)
- * @return cos(x)
- */
- static double slowCos(final double x, final double[] result) {
- final double[] xs = new double[2];
- final double[] ys = new double[2];
- final double[] facts = new double[2];
- final double[] as = new double[2];
- split(x, xs);
- ys[0] = ys[1] = 0.0;
- for (int i = FACT.length-1; i >= 0; i--) {
- splitMult(xs, ys, as);
- ys[0] = as[0]; ys[1] = as[1];
- if ( (i & 1) != 0) { // skip odd entries
- continue;
- }
- split(FACT[i], as);
- splitReciprocal(as, facts);
- if ( (i & 2) != 0 ) { // alternate terms are negative
- facts[0] = -facts[0];
- facts[1] = -facts[1];
- }
- splitAdd(ys, facts, as);
- ys[0] = as[0]; ys[1] = as[1];
- }
- if (result != null) {
- result[0] = ys[0];
- result[1] = ys[1];
- }
- return ys[0] + ys[1];
- }
- /**
- * For x between 0 and pi/4 compute sine using Taylor expansion:
- * sin(x) = x - x^3/3! + x^5/5! - x^7/7! ...
- * @param x number from which sine is requested
- * @param result placeholder where to put the result in extended precision
- * (may be null)
- * @return sin(x)
- */
- static double slowSin(final double x, final double[] result) {
- final double[] xs = new double[2];
- final double[] ys = new double[2];
- final double[] facts = new double[2];
- final double[] as = new double[2];
- split(x, xs);
- ys[0] = ys[1] = 0.0;
- for (int i = FACT.length-1; i >= 0; i--) {
- splitMult(xs, ys, as);
- ys[0] = as[0]; ys[1] = as[1];
- if ( (i & 1) == 0) { // Ignore even numbers
- continue;
- }
- split(FACT[i], as);
- splitReciprocal(as, facts);
- if ( (i & 2) != 0 ) { // alternate terms are negative
- facts[0] = -facts[0];
- facts[1] = -facts[1];
- }
- splitAdd(ys, facts, as);
- ys[0] = as[0]; ys[1] = as[1];
- }
- if (result != null) {
- result[0] = ys[0];
- result[1] = ys[1];
- }
- return ys[0] + ys[1];
- }
- /**
- * For x between 0 and 1, returns exp(x), uses extended precision
- * @param x argument of exponential
- * @param result placeholder where to place exp(x) split in two terms
- * for extra precision (i.e. exp(x) = result[0] + result[1]
- * @return exp(x)
- */
- static double slowexp(final double x, final double[] result) {
- final double[] xs = new double[2];
- final double[] ys = new double[2];
- final double[] facts = new double[2];
- final double[] as = new double[2];
- split(x, xs);
- ys[0] = ys[1] = 0.0;
- for (int i = FACT.length-1; i >= 0; i--) {
- splitMult(xs, ys, as);
- ys[0] = as[0];
- ys[1] = as[1];
- split(FACT[i], as);
- splitReciprocal(as, facts);
- splitAdd(ys, facts, as);
- ys[0] = as[0];
- ys[1] = as[1];
- }
- if (result != null) {
- result[0] = ys[0];
- result[1] = ys[1];
- }
- return ys[0] + ys[1];
- }
- /** Compute split[0], split[1] such that their sum is equal to d,
- * and split[0] has its 30 least significant bits as zero.
- * @param d number to split
- * @param split placeholder where to place the result
- */
- private static void split(final double d, final double[] split) {
- if (d < 8e298 && d > -8e298) {
- final double a = d * HEX_40000000;
- split[0] = (d + a) - a;
- split[1] = d - split[0];
- } else {
- final double a = d * 9.31322574615478515625E-10;
- split[0] = (d + a - d) * HEX_40000000;
- split[1] = d - split[0];
- }
- }
- /** Recompute a split.
- * @param a input/out array containing the split, changed
- * on output
- */
- private static void resplit(final double[] a) {
- final double c = a[0] + a[1];
- final double d = -(c - a[0] - a[1]);
- if (c < 8e298 && c > -8e298) { // MAGIC NUMBER
- double z = c * HEX_40000000;
- a[0] = (c + z) - z;
- a[1] = c - a[0] + d;
- } else {
- double z = c * 9.31322574615478515625E-10;
- a[0] = (c + z - c) * HEX_40000000;
- a[1] = c - a[0] + d;
- }
- }
- /** Multiply two numbers in split form.
- * @param a first term of multiplication
- * @param b second term of multiplication
- * @param ans placeholder where to put the result
- */
- private static void splitMult(double[] a, double[] b, double[] ans) {
- ans[0] = a[0] * b[0];
- ans[1] = a[0] * b[1] + a[1] * b[0] + a[1] * b[1];
- /* Resplit */
- resplit(ans);
- }
- /** Add two numbers in split form.
- * @param a first term of addition
- * @param b second term of addition
- * @param ans placeholder where to put the result
- */
- private static void splitAdd(final double[] a, final double[] b, final double[] ans) {
- ans[0] = a[0] + b[0];
- ans[1] = a[1] + b[1];
- resplit(ans);
- }
- /** Compute the reciprocal of in. Use the following algorithm.
- * in = c + d.
- * want to find x + y such that x+y = 1/(c+d) and x is much
- * larger than y and x has several zero bits on the right.
- *
- * Set b = 1/(2^22), a = 1 - b. Thus (a+b) = 1.
- * Use following identity to compute (a+b)/(c+d)
- *
- * (a+b)/(c+d) = a/c + (bc - ad) / (c^2 + cd)
- * set x = a/c and y = (bc - ad) / (c^2 + cd)
- * This will be close to the right answer, but there will be
- * some rounding in the calculation of X. So by carefully
- * computing 1 - (c+d)(x+y) we can compute an error and
- * add that back in. This is done carefully so that terms
- * of similar size are subtracted first.
- * @param in initial number, in split form
- * @param result placeholder where to put the result
- */
- static void splitReciprocal(final double[] in, final double[] result) {
- final double b = 1.0/4194304.0;
- final double a = 1.0 - b;
- if (in[0] == 0.0) {
- in[0] = in[1];
- in[1] = 0.0;
- }
- result[0] = a / in[0];
- result[1] = (b*in[0]-a*in[1]) / (in[0]*in[0] + in[0]*in[1]);
- if (result[1] != result[1]) { // can happen if result[1] is NAN
- result[1] = 0.0;
- }
- /* Resplit */
- resplit(result);
- for (int i = 0; i < 2; i++) {
- /* this may be overkill, probably once is enough */
- double err = 1.0 - result[0] * in[0] - result[0] * in[1] -
- result[1] * in[0] - result[1] * in[1];
- /*err = 1.0 - err; */
- err *= result[0] + result[1];
- /*printf("err = %16e\n", err); */
- result[1] += err;
- }
- }
- /** Compute (a[0] + a[1]) * (b[0] + b[1]) in extended precision.
- * @param a first term of the multiplication
- * @param b second term of the multiplication
- * @param result placeholder where to put the result
- */
- private static void quadMult(final double[] a, final double[] b, final double[] result) {
- final double[] xs = new double[2];
- final double[] ys = new double[2];
- final double[] zs = new double[2];
- /* a[0] * b[0] */
- split(a[0], xs);
- split(b[0], ys);
- splitMult(xs, ys, zs);
- result[0] = zs[0];
- result[1] = zs[1];
- /* a[0] * b[1] */
- split(b[1], ys);
- splitMult(xs, ys, zs);
- double tmp = result[0] + zs[0];
- result[1] -= tmp - result[0] - zs[0];
- result[0] = tmp;
- tmp = result[0] + zs[1];
- result[1] -= tmp - result[0] - zs[1];
- result[0] = tmp;
- /* a[1] * b[0] */
- split(a[1], xs);
- split(b[0], ys);
- splitMult(xs, ys, zs);
- tmp = result[0] + zs[0];
- result[1] -= tmp - result[0] - zs[0];
- result[0] = tmp;
- tmp = result[0] + zs[1];
- result[1] -= tmp - result[0] - zs[1];
- result[0] = tmp;
- /* a[1] * b[0] */
- split(a[1], xs);
- split(b[1], ys);
- splitMult(xs, ys, zs);
- tmp = result[0] + zs[0];
- result[1] -= tmp - result[0] - zs[0];
- result[0] = tmp;
- tmp = result[0] + zs[1];
- result[1] -= tmp - result[0] - zs[1];
- result[0] = tmp;
- }
- /** Compute exp(p) for a integer p in extended precision.
- * @param p integer whose exponential is requested
- * @param result placeholder where to put the result in extended precision
- * @return exp(p) in standard precision (equal to result[0] + result[1])
- */
- static double expint(int p, final double[] result) {
- //double x = M_E;
- final double[] xs = new double[2];
- final double[] as = new double[2];
- final double[] ys = new double[2];
- //split(x, xs);
- //xs[1] = (double)(2.7182818284590452353602874713526625L - xs[0]);
- //xs[0] = 2.71827697753906250000;
- //xs[1] = 4.85091998273542816811e-06;
- //xs[0] = Double.longBitsToDouble(0x4005bf0800000000L);
- //xs[1] = Double.longBitsToDouble(0x3ed458a2bb4a9b00L);
- /* E */
- xs[0] = 2.718281828459045;
- xs[1] = 1.4456468917292502E-16;
- split(1.0, ys);
- while (p > 0) {
- if ((p & 1) != 0) {
- quadMult(ys, xs, as);
- ys[0] = as[0]; ys[1] = as[1];
- }
- quadMult(xs, xs, as);
- xs[0] = as[0]; xs[1] = as[1];
- p >>= 1;
- }
- if (result != null) {
- result[0] = ys[0];
- result[1] = ys[1];
- resplit(result);
- }
- return ys[0] + ys[1];
- }
- /** xi in the range of [1, 2].
- * 3 5 7
- * x+1 / x x x \
- * ln ----- = 2 * | x + ---- + ---- + ---- + ... |
- * 1-x \ 3 5 7 /
- *
- * So, compute a Remez approximation of the following function
- *
- * ln ((sqrt(x)+1)/(1-sqrt(x))) / x
- *
- * This will be an even function with only positive coefficents.
- * x is in the range [0 - 1/3].
- *
- * Transform xi for input to the above function by setting
- * x = (xi-1)/(xi+1). Input to the polynomial is x^2, then
- * the result is multiplied by x.
- * @param xi number from which log is requested
- * @return log(xi)
- */
- static double[] slowLog(double xi) {
- double[] x = new double[2];
- double[] x2 = new double[2];
- double[] y = new double[2];
- double[] a = new double[2];
- split(xi, x);
- /* Set X = (x-1)/(x+1) */
- x[0] += 1.0;
- resplit(x);
- splitReciprocal(x, a);
- x[0] -= 2.0;
- resplit(x);
- splitMult(x, a, y);
- x[0] = y[0];
- x[1] = y[1];
- /* Square X -> X2*/
- splitMult(x, x, x2);
- //x[0] -= 1.0;
- //resplit(x);
- y[0] = LN_SPLIT_COEF[LN_SPLIT_COEF.length-1][0];
- y[1] = LN_SPLIT_COEF[LN_SPLIT_COEF.length-1][1];
- for (int i = LN_SPLIT_COEF.length-2; i >= 0; i--) {
- splitMult(y, x2, a);
- y[0] = a[0];
- y[1] = a[1];
- splitAdd(y, LN_SPLIT_COEF[i], a);
- y[0] = a[0];
- y[1] = a[1];
- }
- splitMult(y, x, a);
- y[0] = a[0];
- y[1] = a[1];
- return y;
- }
- /**
- * Print an array.
- * @param out text output stream where output should be printed
- * @param name array name
- * @param expectedLen expected length of the array
- * @param array2d array data
- */
- static void printarray(PrintStream out, String name, int expectedLen, double[][] array2d) {
- out.println(name);
- MathUtils.checkDimension(expectedLen, array2d.length);
- out.println(TABLE_START_DECL + " ");
- int i = 0;
- for(double[] array : array2d) { // "double array[]" causes PMD parsing error
- out.print(" {");
- for(double d : array) { // assume inner array has very few entries
- out.printf("%-25.25s", format(d)); // multiple entries per line
- }
- out.println("}, // " + i++);
- }
- out.println(TABLE_END_DECL);
- }
- /**
- * Print an array.
- * @param out text output stream where output should be printed
- * @param name array name
- * @param expectedLen expected length of the array
- * @param array array data
- */
- static void printarray(PrintStream out, String name, int expectedLen, double[] array) {
- out.println(name + "=");
- MathUtils.checkDimension(expectedLen, array.length);
- out.println(TABLE_START_DECL);
- for(double d : array){
- out.printf(" %s%n", format(d)); // one entry per line
- }
- out.println(TABLE_END_DECL);
- }
- /** Format a double.
- * @param d double number to format
- * @return formatted number
- */
- static String format(double d) {
- if (d != d) {
- return "Double.NaN,";
- } else {
- return ((d >= 0) ? "+" : "") + d + "d,";
- }
- }
- }