Gamma.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.special;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.util.ContinuedFraction;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.FieldContinuedFraction;
- /**
- * <p>
- * This is a utility class that provides computation methods related to the
- * Γ (Gamma) family of functions.
- * </p>
- * <p>
- * Implementation of {@link #invGamma1pm1(double)} and
- * {@link #logGamma1p(double)} is based on the algorithms described in
- * </p>
- * <ul>
- * <li><a href="http://dx.doi.org/10.1145/22721.23109">Didonato and Morris
- * (1986)</a>, <em>Computation of the Incomplete Gamma Function Ratios and
- * their Inverse</em>, TOMS 12(4), 377-393,</li>
- * <li><a href="http://dx.doi.org/10.1145/131766.131776">Didonato and Morris
- * (1992)</a>, <em>Algorithm 708: Significant Digit Computation of the
- * Incomplete Beta Function Ratios</em>, TOMS 18(3), 360-373,</li>
- * </ul>
- * <p>
- * and implemented in the
- * <a href="http://www.dtic.mil/docs/citations/ADA476840">NSWC Library of Mathematical Functions</a>,
- * available
- * <a href="http://www.ualberta.ca/CNS/RESEARCH/Software/NumericalNSWC/site.html">here</a>.
- * This library is "approved for public release", and the
- * <a href="http://www.dtic.mil/dtic/pdf/announcements/CopyrightGuidance.pdf">Copyright guidance</a>
- * indicates that unless otherwise stated in the code, all FORTRAN functions in
- * this library are license free. Since no such notice appears in the code these
- * functions can safely be ported to Hipparchus.
- * </p>
- *
- */
- public class Gamma {
- /**
- * <a href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant">Euler-Mascheroni constant</a>
- */
- public static final double GAMMA = 0.577215664901532860606512090082; // NOPMD - the fact the function and the constant have the same name is intentional and comes from mathematics conventions
- /**
- * The value of the {@code g} constant in the Lanczos approximation, see
- * {@link #lanczos(double)}.
- */
- public static final double LANCZOS_G = 607.0 / 128.0;
- /** Maximum allowed numerical error. */
- private static final double DEFAULT_EPSILON = 10e-15;
- /** Lanczos coefficients */
- private static final double[] LANCZOS = {
- 0.99999999999999709182,
- 57.156235665862923517,
- -59.597960355475491248,
- 14.136097974741747174,
- -0.49191381609762019978,
- .33994649984811888699e-4,
- .46523628927048575665e-4,
- -.98374475304879564677e-4,
- .15808870322491248884e-3,
- -.21026444172410488319e-3,
- .21743961811521264320e-3,
- -.16431810653676389022e-3,
- .84418223983852743293e-4,
- -.26190838401581408670e-4,
- .36899182659531622704e-5,
- };
- /** Avoid repeated computation of log of 2 PI in logGamma */
- private static final double HALF_LOG_2_PI = 0.5 * FastMath.log(2.0 * FastMath.PI);
- /** The constant value of √(2π). */
- private static final double SQRT_TWO_PI = 2.506628274631000502;
- // limits for switching algorithm in digamma
- /** C limit. */
- private static final double C_LIMIT = 49;
- /** S limit. */
- private static final double S_LIMIT = 1e-8;
- /*
- * Constants for the computation of double invGamma1pm1(double).
- * Copied from DGAM1 in the NSWC library.
- */
- /** The constant {@code A0} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_A0 = .611609510448141581788E-08;
- /** The constant {@code A1} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_A1 = .624730830116465516210E-08;
- /** The constant {@code B1} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_B1 = .203610414066806987300E+00;
- /** The constant {@code B2} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_B2 = .266205348428949217746E-01;
- /** The constant {@code B3} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_B3 = .493944979382446875238E-03;
- /** The constant {@code B4} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_B4 = -.851419432440314906588E-05;
- /** The constant {@code B5} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_B5 = -.643045481779353022248E-05;
- /** The constant {@code B6} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_B6 = .992641840672773722196E-06;
- /** The constant {@code B7} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_B7 = -.607761895722825260739E-07;
- /** The constant {@code B8} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_B8 = .195755836614639731882E-09;
- /** The constant {@code P0} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_P0 = .6116095104481415817861E-08;
- /** The constant {@code P1} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_P1 = .6871674113067198736152E-08;
- /** The constant {@code P2} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_P2 = .6820161668496170657918E-09;
- /** The constant {@code P3} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_P3 = .4686843322948848031080E-10;
- /** The constant {@code P4} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_P4 = .1572833027710446286995E-11;
- /** The constant {@code P5} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_P5 = -.1249441572276366213222E-12;
- /** The constant {@code P6} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_P6 = .4343529937408594255178E-14;
- /** The constant {@code Q1} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_Q1 = .3056961078365221025009E+00;
- /** The constant {@code Q2} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_Q2 = .5464213086042296536016E-01;
- /** The constant {@code Q3} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_Q3 = .4956830093825887312020E-02;
- /** The constant {@code Q4} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_Q4 = .2692369466186361192876E-03;
- /** The constant {@code C} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C = -.422784335098467139393487909917598E+00;
- /** The constant {@code C0} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C0 = .577215664901532860606512090082402E+00;
- /** The constant {@code C1} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C1 = -.655878071520253881077019515145390E+00;
- /** The constant {@code C2} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C2 = -.420026350340952355290039348754298E-01;
- /** The constant {@code C3} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C3 = .166538611382291489501700795102105E+00;
- /** The constant {@code C4} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C4 = -.421977345555443367482083012891874E-01;
- /** The constant {@code C5} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C5 = -.962197152787697356211492167234820E-02;
- /** The constant {@code C6} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C6 = .721894324666309954239501034044657E-02;
- /** The constant {@code C7} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C7 = -.116516759185906511211397108401839E-02;
- /** The constant {@code C8} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C8 = -.215241674114950972815729963053648E-03;
- /** The constant {@code C9} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C9 = .128050282388116186153198626328164E-03;
- /** The constant {@code C10} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C10 = -.201348547807882386556893914210218E-04;
- /** The constant {@code C11} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C11 = -.125049348214267065734535947383309E-05;
- /** The constant {@code C12} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C12 = .113302723198169588237412962033074E-05;
- /** The constant {@code C13} defined in {@code DGAM1}. */
- private static final double INV_GAMMA1P_M1_C13 = -.205633841697760710345015413002057E-06;
- /**
- * Default constructor. Prohibit instantiation.
- */
- private Gamma() {}
- /**
- * <p>
- * Returns the value of log Γ(x) for x > 0.
- * </p>
- * <p>
- * For x ≤ 8, the implementation is based on the double precision
- * implementation in the <em>NSWC Library of Mathematics Subroutines</em>,
- * {@code DGAMLN}. For x > 8, the implementation is based on
- * </p>
- * <ul>
- * <li><a href="http://mathworld.wolfram.com/GammaFunction.html">Gamma
- * Function</a>, equation (28).</li>
- * <li><a href="http://mathworld.wolfram.com/LanczosApproximation.html">
- * Lanczos Approximation</a>, equations (1) through (5).</li>
- * <li><a href="http://my.fit.edu/~gabdo/gamma.txt">Paul Godfrey, A note on
- * the computation of the convergent Lanczos complex Gamma
- * approximation</a></li>
- * </ul>
- *
- * @param x Argument.
- * @return the value of {@code log(Gamma(x))}, {@code Double.NaN} if
- * {@code x <= 0.0}.
- */
- public static double logGamma(double x) {
- double ret;
- if (Double.isNaN(x) || (x <= 0.0)) {
- ret = Double.NaN;
- } else if (x < 0.5) {
- return logGamma1p(x) - FastMath.log(x);
- } else if (x <= 2.5) {
- return logGamma1p((x - 0.5) - 0.5);
- } else if (x <= 8.0) {
- final int n = (int) FastMath.floor(x - 1.5);
- double prod = 1.0;
- for (int i = 1; i <= n; i++) {
- prod *= x - i;
- }
- return logGamma1p(x - (n + 1)) + FastMath.log(prod);
- } else {
- double sum = lanczos(x);
- double tmp = x + LANCZOS_G + .5;
- ret = ((x + .5) * FastMath.log(tmp)) - tmp +
- HALF_LOG_2_PI + FastMath.log(sum / x);
- }
- return ret;
- }
- /**
- * <p>
- * Returns the value of log Γ(x) for x > 0.
- * </p>
- * <p>
- * For x ≤ 8, the implementation is based on the double precision
- * implementation in the <em>NSWC Library of Mathematics Subroutines</em>,
- * {@code DGAMLN}. For x > 8, the implementation is based on
- * </p>
- * <ul>
- * <li><a href="http://mathworld.wolfram.com/GammaFunction.html">Gamma
- * Function</a>, equation (28).</li>
- * <li><a href="http://mathworld.wolfram.com/LanczosApproximation.html">
- * Lanczos Approximation</a>, equations (1) through (5).</li>
- * <li><a href="http://my.fit.edu/~gabdo/gamma.txt">Paul Godfrey, A note on
- * the computation of the convergent Lanczos complex Gamma
- * approximation</a></li>
- * </ul>
- *
- * @param x Argument.
- * @param <T> Type of the field elements.
- * @return the value of {@code log(Gamma(x))}, {@code Double.NaN} if
- * {@code x <= 0.0}.
- */
- public static <T extends CalculusFieldElement<T>> T logGamma(T x) {
- final Field<T> field = x.getField();
- T ret;
- if (x.isNaN() || (x.getReal() <= 0.0)) {
- ret = field.getOne().multiply(Double.NaN);
- }
- else if (x.getReal() < 0.5) {
- return logGamma1p(x).subtract(x.log());
- }
- else if (x.getReal() <= 2.5) {
- return logGamma1p(x.subtract(1));
- }
- else if (x.getReal() <= 8.0) {
- final int n = (int) x.subtract(1.5).floor().getReal();
- T prod = field.getOne();
- for (int i = 1; i <= n; i++) {
- prod = prod.multiply(x.subtract(i));
- }
- return logGamma1p(x.subtract(n + 1)).add(prod.log());
- }
- else {
- T sum = lanczos(x);
- T tmp = x.add(LANCZOS_G + .5);
- ret = x.add(.5).multiply(tmp.log()).subtract(tmp).add(HALF_LOG_2_PI).add(sum.divide(x).log());
- }
- return ret;
- }
- /**
- * Returns the regularized gamma function P(a, x).
- *
- * @param a Parameter.
- * @param x Value.
- * @return the regularized gamma function P(a, x).
- * @throws MathIllegalStateException if the algorithm fails to converge.
- */
- public static double regularizedGammaP(double a, double x) {
- return regularizedGammaP(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
- }
- /**
- * Returns the regularized gamma function P(a, x).
- *
- * @param a Parameter.
- * @param x Value.
- * @param <T> Type of the field elements.
- * @return the regularized gamma function P(a, x).
- * @throws MathIllegalStateException if the algorithm fails to converge.
- */
- public static <T extends CalculusFieldElement<T>> T regularizedGammaP(T a, T x) {
- return regularizedGammaP(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
- }
- /**
- * Returns the regularized gamma function P(a, x).
- * <p>
- * The implementation of this method is based on:
- * <ul>
- * <li>
- * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
- * Regularized Gamma Function</a>, equation (1)
- * </li>
- * <li>
- * <a href="http://mathworld.wolfram.com/IncompleteGammaFunction.html">
- * Incomplete Gamma Function</a>, equation (4).
- * </li>
- * <li>
- * <a href="http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html">
- * Confluent Hypergeometric Function of the First Kind</a>, equation (1).
- * </li>
- * </ul>
- *
- * @param a the a parameter.
- * @param x the value.
- * @param epsilon When the absolute value of the nth item in the
- * series is less than epsilon the approximation ceases to calculate
- * further elements in the series.
- * @param maxIterations Maximum number of "iterations" to complete.
- * @return the regularized gamma function P(a, x)
- * @throws MathIllegalStateException if the algorithm fails to converge.
- */
- public static double regularizedGammaP(double a,
- double x,
- double epsilon,
- int maxIterations) {
- double ret;
- if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
- ret = Double.NaN;
- } else if (x == 0.0) {
- ret = 0.0;
- } else if (x >= a + 1) {
- // use regularizedGammaQ because it should converge faster in this
- // case.
- ret = 1.0 - regularizedGammaQ(a, x, epsilon, maxIterations);
- } else {
- // calculate series
- double n = 0.0; // current element index
- double an = 1.0 / a; // n-th element in the series
- double sum = an; // partial sum
- while (FastMath.abs(an/sum) > epsilon &&
- n < maxIterations &&
- sum < Double.POSITIVE_INFINITY) {
- // compute next element in the series
- n += 1.0;
- an *= x / (a + n);
- // update partial sum
- sum += an;
- }
- if (n >= maxIterations) {
- throw new MathIllegalStateException(LocalizedCoreFormats.MAX_COUNT_EXCEEDED, maxIterations);
- } else if (Double.isInfinite(sum)) {
- ret = 1.0;
- } else {
- ret = FastMath.exp(-x + (a * FastMath.log(x)) - logGamma(a)) * sum;
- }
- }
- return ret;
- }
- /**
- * Returns the regularized gamma function P(a, x).
- * <p>
- * The implementation of this method is based on:
- * <ul>
- * <li>
- * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
- * Regularized Gamma Function</a>, equation (1)
- * </li>
- * <li>
- * <a href="http://mathworld.wolfram.com/IncompleteGammaFunction.html">
- * Incomplete Gamma Function</a>, equation (4).
- * </li>
- * <li>
- * <a href="http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html">
- * Confluent Hypergeometric Function of the First Kind</a>, equation (1).
- * </li>
- * </ul>
- *
- * @param a the a parameter.
- * @param x the value.
- * @param epsilon When the absolute value of the nth item in the
- * series is less than epsilon the approximation ceases to calculate
- * further elements in the series.
- * @param maxIterations Maximum number of "iterations" to complete.
- * @param <T> Type of the field elements.
- * @return the regularized gamma function P(a, x)
- * @throws MathIllegalStateException if the algorithm fails to converge.
- */
- public static <T extends CalculusFieldElement<T>> T regularizedGammaP(T a,
- T x,
- double epsilon,
- int maxIterations) {
- final Field<T> field = x.getField();
- final T zero = field.getZero();
- final T one = field.getOne();
- T ret;
- if (a.isNaN() || x.isNaN() || (a.getReal() <= 0.0) || (x.getReal() < 0.0)) {
- ret = one.multiply(Double.NaN);
- }
- else if (x.getReal() == 0.0) {
- ret = zero;
- }
- else if (x.getReal() >= a.add(1).getReal()) {
- // use regularizedGammaQ because it should converge faster in this
- // case.
- ret = one.subtract(regularizedGammaQ(a, x, epsilon, maxIterations));
- }
- else {
- // calculate series
- double n = 0.0; // current element index
- T an = one.divide(a); // n-th element in the series
- T sum = an; // partial sum
- while (an.divide(sum).abs().getReal() > epsilon &&
- n < maxIterations &&
- sum.getReal() < Double.POSITIVE_INFINITY) {
- // compute next element in the series
- n += 1.0;
- an = an.multiply(x.divide(a.add(n)));
- // update partial sum
- sum = sum.add(an);
- }
- if (n >= maxIterations) {
- throw new MathIllegalStateException(LocalizedCoreFormats.MAX_COUNT_EXCEEDED, maxIterations);
- }
- else if (sum.isInfinite()) {
- ret = one;
- }
- else {
- ret = a.multiply(x.log()).subtract(logGamma(a)).subtract(x).exp().multiply(sum);
- }
- }
- return ret;
- }
- /**
- * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
- *
- * @param a the a parameter.
- * @param x the value.
- * @return the regularized gamma function Q(a, x)
- * @throws MathIllegalStateException if the algorithm fails to converge.
- */
- public static double regularizedGammaQ(double a, double x) {
- return regularizedGammaQ(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
- }
- /**
- * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
- *
- * @param a the a parameter.
- * @param x the value.
- * @param <T> Type of the field elements.
- * @return the regularized gamma function Q(a, x)
- * @throws MathIllegalStateException if the algorithm fails to converge.
- */
- public static <T extends CalculusFieldElement<T>> T regularizedGammaQ(T a, T x) {
- return regularizedGammaQ(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
- }
- /**
- * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
- * <p>
- * The implementation of this method is based on:
- * <ul>
- * <li>
- * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
- * Regularized Gamma Function</a>, equation (1).
- * </li>
- * <li>
- * <a href="http://functions.wolfram.com/GammaBetaErf/GammaRegularized/10/0003/">
- * Regularized incomplete gamma function: Continued fraction representations
- * (formula 06.08.10.0003)</a>
- * </li>
- * </ul>
- *
- * @param a the a parameter.
- * @param x the value.
- * @param epsilon When the absolute value of the nth item in the
- * series is less than epsilon the approximation ceases to calculate
- * further elements in the series.
- * @param maxIterations Maximum number of "iterations" to complete.
- * @return the regularized gamma function P(a, x)
- * @throws MathIllegalStateException if the algorithm fails to converge.
- */
- public static double regularizedGammaQ(final double a,
- double x,
- double epsilon,
- int maxIterations) {
- double ret;
- if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
- ret = Double.NaN;
- } else if (x == 0.0) {
- ret = 1.0;
- } else if (x < a + 1.0) {
- // use regularizedGammaP because it should converge faster in this
- // case.
- ret = 1.0 - regularizedGammaP(a, x, epsilon, maxIterations);
- } else {
- // create continued fraction
- ContinuedFraction cf = new ContinuedFraction() {
- /** {@inheritDoc} */
- @Override
- protected double getA(int n, double x) {
- return ((2.0 * n) + 1.0) - a + x;
- }
- /** {@inheritDoc} */
- @Override
- protected double getB(int n, double x) {
- return n * (a - n);
- }
- };
- ret = 1.0 / cf.evaluate(x, epsilon, maxIterations);
- ret = FastMath.exp(-x + (a * FastMath.log(x)) - logGamma(a)) * ret;
- }
- return ret;
- }
- /**
- * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
- * <p>
- * The implementation of this method is based on:
- * <ul>
- * <li>
- * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
- * Regularized Gamma Function</a>, equation (1).
- * </li>
- * <li>
- * <a href="http://functions.wolfram.com/GammaBetaErf/GammaRegularized/10/0003/">
- * Regularized incomplete gamma function: Continued fraction representations
- * (formula 06.08.10.0003)</a>
- * </li>
- * </ul>
- *
- * @param a the a parameter.
- * @param x the value.
- * @param epsilon When the absolute value of the nth item in the
- * series is less than epsilon the approximation ceases to calculate
- * further elements in the series.
- * @param maxIterations Maximum number of "iterations" to complete.
- * @param <T> Type fo the field elements.
- * @return the regularized gamma function P(a, x)
- * @throws MathIllegalStateException if the algorithm fails to converge.
- */
- public static <T extends CalculusFieldElement<T>> T regularizedGammaQ(final T a,
- T x,
- double epsilon,
- int maxIterations) {
- final Field<T> field = x.getField();
- final T one = field.getOne();
- T ret;
- if (a.isNaN() || x.isNaN() || a.getReal() <= 0.0 || x.getReal() < 0.0) {
- ret = field.getOne().multiply(Double.NaN);
- }
- else if (x.getReal() == 0.0) {
- ret = one;
- }
- else if (x.getReal() < a.add(1.0).getReal()) {
- // use regularizedGammaP because it should converge faster in this
- // case.
- ret = one.subtract(regularizedGammaP(a, x, epsilon, maxIterations));
- }
- else {
- // create continued fraction
- FieldContinuedFraction cf = new FieldContinuedFraction() {
- /** {@inheritDoc} */
- @Override
- @SuppressWarnings("unchecked")
- public <C extends CalculusFieldElement<C>> C getA(final int n, final C x) {
- return x.subtract((C) a).add((2.0 * n) + 1.0);
- }
- /** {@inheritDoc} */
- @Override
- @SuppressWarnings("unchecked")
- public <C extends CalculusFieldElement<C>> C getB(final int n, final C x) {
- return (C) a.subtract(n).multiply(n);
- }
- };
- ret = one.divide(cf.evaluate(x, epsilon, maxIterations));
- ret = a.multiply(x.log()).subtract(logGamma(a)).subtract(x).exp().multiply(ret);
- }
- return ret;
- }
- /**
- * <p>Computes the digamma function of x.</p>
- *
- * <p>This is an independently written implementation of the algorithm described in
- * Jose Bernardo, Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976.</p>
- *
- * <p>Some of the constants have been changed to increase accuracy at the moderate expense
- * of run-time. The result should be accurate to within 10^-8 absolute tolerance for
- * x >= 10^-5 and within 10^-8 relative tolerance for x > 0.</p>
- *
- * <p>Performance for large negative values of x will be quite expensive (proportional to
- * |x|). Accuracy for negative values of x should be about 10^-8 absolute for results
- * less than 10^5 and 10^-8 relative for results larger than that.</p>
- *
- * @param x Argument.
- * @return digamma(x) to within 10-8 relative or absolute error whichever is smaller.
- * @see <a href="http://en.wikipedia.org/wiki/Digamma_function">Digamma</a>
- * @see <a href="http://www.uv.es/~bernardo/1976AppStatist.pdf">Bernardo's original article </a>
- */
- public static double digamma(double x) {
- if (Double.isNaN(x) || Double.isInfinite(x)) {
- return x;
- }
- if (x > 0 && x <= S_LIMIT) {
- // use method 5 from Bernardo AS103
- // accurate to O(x)
- return -GAMMA - 1 / x;
- }
- if (x >= C_LIMIT) {
- // use method 8 (accurate to O(1/x^8))
- double inv = 1 / (x * x);
- // 1 1 1 1 1 5 691 1
- // log(x) - --- - ------ + ------- - ------- + ------- - ------- + ---------- - -------
- // 2 x 12 x^2 120 x^4 252 x^6 240 x^8 660 x^10 32760 x^12 12 x^14
- return FastMath.log(x) - 0.5 / x - inv * ((1.0 / 12) + inv * (1.0 / 120 - inv * (1.0 / 252 + inv *
- (1.0 / 240 - inv * (5.0 / 660 + inv * (691.0 / 32760 - inv / 12))))));
- }
- return digamma(x + 1) - 1 / x;
- }
- /**
- * <p>Computes the digamma function of x.</p>
- *
- * <p>This is an independently written implementation of the algorithm described in
- * Jose Bernardo, Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976.</p>
- *
- * <p>Some of the constants have been changed to increase accuracy at the moderate expense
- * of run-time. The result should be accurate to within 10^-8 absolute tolerance for
- * x >= 10^-5 and within 10^-8 relative tolerance for x > 0.</p>
- *
- * <p>Performance for large negative values of x will be quite expensive (proportional to
- * |x|). Accuracy for negative values of x should be about 10^-8 absolute for results
- * less than 10^5 and 10^-8 relative for results larger than that.</p>
- *
- * @param x Argument.
- * @param <T> Type of the field elements.
- * @return digamma(x) to within 10-8 relative or absolute error whichever is smaller.
- * @see <a href="http://en.wikipedia.org/wiki/Digamma_function">Digamma</a>
- * @see <a href="http://www.uv.es/~bernardo/1976AppStatist.pdf">Bernardo's original article </a>
- */
- public static <T extends CalculusFieldElement<T>> T digamma(T x) {
- if (x.isNaN() || x.isInfinite()) {
- return x;
- }
- if (x.getReal() > 0 && x.getReal() <= S_LIMIT) {
- // use method 5 from Bernardo AS103
- // accurate to O(x)
- return x.pow(-1).negate().subtract(GAMMA);
- }
- if (x.getReal() >= C_LIMIT) {
- // use method 8 (accurate to O(1/x^8))
- T inv = x.square().reciprocal();
- // 1 1 1 1 1 5 691 1
- // log(x) - --- - ------ + ------- - ------- + ------- - ------- + ---------- - -------
- // 2 x 12 x^2 120 x^4 252 x^6 240 x^8 660 x^10 32760 x^12 12 x^14
- return x.log().subtract(x.pow(-1).multiply(0.5)).add(
- inv.multiply(
- inv.multiply(
- inv.multiply(
- inv.multiply(
- inv.multiply(
- inv.multiply(inv.divide(-12.)
- .add(691. / 32760))
- .subtract(5. / 660))
- .add(1.0 / 240))
- .subtract(1.0 / 252))
- .add(1.0 / 120))
- .subtract(1.0 / 12)));
- }
- return digamma(x.add(1.)).subtract(x.pow(-1));
- }
- /**
- * Computes the trigamma function of x.
- * This function is derived by taking the derivative of the implementation
- * of digamma.
- *
- * @param x Argument.
- * @return trigamma(x) to within 10-8 relative or absolute error whichever is smaller
- * @see <a href="http://en.wikipedia.org/wiki/Trigamma_function">Trigamma</a>
- * @see Gamma#digamma(double)
- */
- public static double trigamma(double x) {
- if (Double.isNaN(x) || Double.isInfinite(x)) {
- return x;
- }
- if (x > 0 && x <= S_LIMIT) {
- return 1 / (x * x);
- }
- if (x >= C_LIMIT) {
- double inv = 1 / (x * x);
- // 1 1 1 1 1 1 5 691 7
- // - + ---- + ---- - ----- + ----- - ----- + ------- - -------- + ------
- // x 2 3 5 7 9 11 13 15
- // 2 x 6 x 30 x 42 x 30 x 66 x 2730 x 6 x
- return 1 / x + inv * 0.5 + inv / x * (1.0 / 6 - inv * (1.0 / 30 + inv * (1.0 / 42 - inv * (1.0 / 30 + inv *
- (5.0 / 66 - inv * (691. / 2730 + inv * 7. / 15))))));
- }
- return trigamma(x + 1) + 1 / (x * x);
- }
- /**
- * Computes the trigamma function of x.
- * This function is derived by taking the derivative of the implementation
- * of digamma.
- *
- * @param x Argument.
- * @param <T> Type of the field elements.
- * @return trigamma(x) to within 10-8 relative or absolute error whichever is smaller
- * @see <a href="http://en.wikipedia.org/wiki/Trigamma_function">Trigamma</a>
- * @see Gamma#digamma(double)
- */
- public static <T extends CalculusFieldElement<T>> T trigamma(T x) {
- if (x.isNaN() || x.isInfinite()) {
- return x;
- }
- if (x.getReal() > 0 && x.getReal() <= S_LIMIT) {
- // use method 5 from Bernardo AS103
- // accurate to O(x)
- return x.square().reciprocal();
- }
- if (x.getReal() >= C_LIMIT) {
- // use method 4 (accurate to O(1/x^8)
- T inv = x.square().reciprocal();
- T invCub = inv.multiply(x.reciprocal());
- // 1 1 1 1 1 1 5 691 7
- // - + ---- + ---- - ----- + ----- + ----- + ------- - -------- + ------
- // x 2 3 5 7 9 11 13 15
- // 2 x 6 x 30 x 42 x 30 x 66 x 2730 x 6 x
- return x.pow(-1).add(
- inv.multiply(0.5)).add(
- invCub.multiply(
- inv.multiply(
- inv.multiply(
- inv.multiply(
- inv.multiply(
- inv.multiply(inv.multiply(7. / 6)
- .subtract(691. / 2730))
- .add(5. / 66))
- .subtract(1.0 / 30))
- .add(1.0 / 42))
- .subtract(1.0 / 30))
- .add(1.0 / 6)));
- }
- return trigamma(x.add(1.)).add(x.square().reciprocal());
- }
- /**
- * <p>
- * Returns the Lanczos approximation used to compute the gamma function.
- * The Lanczos approximation is related to the Gamma function by the
- * following equation
- * \[
- * \Gamma(x) = \frac{\sqrt{2\pi}}{x} \times (x + g + \frac{1}{2}) ^ (x + \frac{1}{2})
- * \times e^{-x - g - 0.5} \times \mathrm{lanczos}(x)
- * \]
- * where {@code g} is the Lanczos constant.
- * </p>
- *
- * @param x Argument.
- * @return The Lanczos approximation.
- * @see <a href="http://mathworld.wolfram.com/LanczosApproximation.html">Lanczos Approximation</a>
- * equations (1) through (5), and Paul Godfrey's
- * <a href="http://my.fit.edu/~gabdo/gamma.txt">Note on the computation
- * of the convergent Lanczos complex Gamma approximation</a>
- */
- public static double lanczos(final double x) {
- double sum = 0.0;
- for (int i = LANCZOS.length - 1; i > 0; --i) {
- sum += LANCZOS[i] / (x + i);
- }
- return sum + LANCZOS[0];
- }
- /**
- * <p>
- * Returns the Lanczos approximation used to compute the gamma function.
- * The Lanczos approximation is related to the Gamma function by the
- * following equation
- * \[
- * \Gamma(x) = \frac{\sqrt{2\pi}}{x} \times (x + g + \frac{1}{2}) ^ (x + \frac{1}{2})
- * \times e^{-x - g - 0.5} \times \mathrm{lanczos}(x)
- * \]
- * where {@code g} is the Lanczos constant.
- * </p>
- *
- * @param x Argument.
- * @param <T> Type of the field elements.
- * @return The Lanczos approximation.
- * @see <a href="http://mathworld.wolfram.com/LanczosApproximation.html">Lanczos Approximation</a>
- * equations (1) through (5), and Paul Godfrey's
- * <a href="http://my.fit.edu/~gabdo/gamma.txt">Note on the computation
- * of the convergent Lanczos complex Gamma approximation</a>
- */
- public static <T extends CalculusFieldElement<T>> T lanczos(final T x) {
- final Field<T> field = x.getField();
- T sum = field.getZero();
- for (int i = LANCZOS.length - 1; i > 0; --i) {
- sum = sum.add(x.add(i).pow(-1.).multiply(LANCZOS[i]));
- }
- return sum.add(LANCZOS[0]);
- }
- /**
- * Returns the value of 1 / Γ(1 + x) - 1 for -0.5 ≤ x ≤
- * 1.5. This implementation is based on the double precision
- * implementation in the <em>NSWC Library of Mathematics Subroutines</em>,
- * {@code DGAM1}.
- *
- * @param x Argument.
- * @return The value of {@code 1.0 / Gamma(1.0 + x) - 1.0}.
- * @throws MathIllegalArgumentException if {@code x < -0.5}
- * @throws MathIllegalArgumentException if {@code x > 1.5}
- */
- public static double invGamma1pm1(final double x) {
- if (x < -0.5) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
- x, -0.5);
- }
- if (x > 1.5) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE,
- x, 1.5);
- }
- final double ret;
- final double t = x <= 0.5 ? x : (x - 0.5) - 0.5;
- if (t < 0.0) {
- final double a = INV_GAMMA1P_M1_A0 + t * INV_GAMMA1P_M1_A1;
- double b = INV_GAMMA1P_M1_B8;
- b = INV_GAMMA1P_M1_B7 + t * b;
- b = INV_GAMMA1P_M1_B6 + t * b;
- b = INV_GAMMA1P_M1_B5 + t * b;
- b = INV_GAMMA1P_M1_B4 + t * b;
- b = INV_GAMMA1P_M1_B3 + t * b;
- b = INV_GAMMA1P_M1_B2 + t * b;
- b = INV_GAMMA1P_M1_B1 + t * b;
- b = 1.0 + t * b;
- double c = INV_GAMMA1P_M1_C13 + t * (a / b);
- c = INV_GAMMA1P_M1_C12 + t * c;
- c = INV_GAMMA1P_M1_C11 + t * c;
- c = INV_GAMMA1P_M1_C10 + t * c;
- c = INV_GAMMA1P_M1_C9 + t * c;
- c = INV_GAMMA1P_M1_C8 + t * c;
- c = INV_GAMMA1P_M1_C7 + t * c;
- c = INV_GAMMA1P_M1_C6 + t * c;
- c = INV_GAMMA1P_M1_C5 + t * c;
- c = INV_GAMMA1P_M1_C4 + t * c;
- c = INV_GAMMA1P_M1_C3 + t * c;
- c = INV_GAMMA1P_M1_C2 + t * c;
- c = INV_GAMMA1P_M1_C1 + t * c;
- c = INV_GAMMA1P_M1_C + t * c;
- if (x > 0.5) {
- ret = t * c / x;
- } else {
- ret = x * ((c + 0.5) + 0.5);
- }
- } else {
- double p = INV_GAMMA1P_M1_P6;
- p = INV_GAMMA1P_M1_P5 + t * p;
- p = INV_GAMMA1P_M1_P4 + t * p;
- p = INV_GAMMA1P_M1_P3 + t * p;
- p = INV_GAMMA1P_M1_P2 + t * p;
- p = INV_GAMMA1P_M1_P1 + t * p;
- p = INV_GAMMA1P_M1_P0 + t * p;
- double q = INV_GAMMA1P_M1_Q4;
- q = INV_GAMMA1P_M1_Q3 + t * q;
- q = INV_GAMMA1P_M1_Q2 + t * q;
- q = INV_GAMMA1P_M1_Q1 + t * q;
- q = 1.0 + t * q;
- double c = INV_GAMMA1P_M1_C13 + (p / q) * t;
- c = INV_GAMMA1P_M1_C12 + t * c;
- c = INV_GAMMA1P_M1_C11 + t * c;
- c = INV_GAMMA1P_M1_C10 + t * c;
- c = INV_GAMMA1P_M1_C9 + t * c;
- c = INV_GAMMA1P_M1_C8 + t * c;
- c = INV_GAMMA1P_M1_C7 + t * c;
- c = INV_GAMMA1P_M1_C6 + t * c;
- c = INV_GAMMA1P_M1_C5 + t * c;
- c = INV_GAMMA1P_M1_C4 + t * c;
- c = INV_GAMMA1P_M1_C3 + t * c;
- c = INV_GAMMA1P_M1_C2 + t * c;
- c = INV_GAMMA1P_M1_C1 + t * c;
- c = INV_GAMMA1P_M1_C0 + t * c;
- if (x > 0.5) {
- ret = (t / x) * ((c - 0.5) - 0.5);
- } else {
- ret = x * c;
- }
- }
- return ret;
- }
- /**
- * Returns the value of 1 / Γ(1 + x) - 1 for -0.5 ≤ x ≤
- * 1.5. This implementation is based on the double precision
- * implementation in the <em>NSWC Library of Mathematics Subroutines</em>,
- * {@code DGAM1}.
- *
- * @param x Argument.
- * @param <T> Type of the field elements.
- * @return The value of {@code 1.0 / Gamma(1.0 + x) - 1.0}.
- * @throws MathIllegalArgumentException if {@code x < -0.5}
- * @throws MathIllegalArgumentException if {@code x > 1.5}
- */
- public static <T extends CalculusFieldElement<T>> T invGamma1pm1(final T x) {
- final T one = x.getField().getOne();
- if (x.getReal() < -0.5) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
- x, -0.5);
- }
- if (x.getReal() > 1.5) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE,
- x, 1.5);
- }
- final T ret;
- final T t = x.getReal() <= 0.5 ? x : x.subtract(1);
- if (t.getReal() < 0.0) {
- final T a = one.newInstance(INV_GAMMA1P_M1_A0).add(t.multiply(INV_GAMMA1P_M1_A1));
- T b = one.newInstance(INV_GAMMA1P_M1_B8);
- b = t.multiply(b).add(INV_GAMMA1P_M1_B7);
- b = t.multiply(b).add(INV_GAMMA1P_M1_B6);
- b = t.multiply(b).add(INV_GAMMA1P_M1_B5);
- b = t.multiply(b).add(INV_GAMMA1P_M1_B4);
- b = t.multiply(b).add(INV_GAMMA1P_M1_B3);
- b = t.multiply(b).add(INV_GAMMA1P_M1_B2);
- b = t.multiply(b).add(INV_GAMMA1P_M1_B1);
- b = t.multiply(b).add(1.);
- T c = one.newInstance(INV_GAMMA1P_M1_C13).add(t.multiply(a.divide(b)));
- c = t.multiply(c).add(INV_GAMMA1P_M1_C12);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C11);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C10);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C9);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C8);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C7);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C6);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C5);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C4);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C3);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C2);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C1);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C);
- if (x.getReal() > 0.5) {
- ret = t.multiply(c).divide(x);
- }
- else {
- ret = x.multiply(c.add(1));
- }
- }
- else {
- T p = one.newInstance(INV_GAMMA1P_M1_P6);
- p = t.multiply(p).add(INV_GAMMA1P_M1_P5);
- p = t.multiply(p).add(INV_GAMMA1P_M1_P4);
- p = t.multiply(p).add(INV_GAMMA1P_M1_P3);
- p = t.multiply(p).add(INV_GAMMA1P_M1_P2);
- p = t.multiply(p).add(INV_GAMMA1P_M1_P1);
- p = t.multiply(p).add(INV_GAMMA1P_M1_P0);
- T q = one.newInstance(INV_GAMMA1P_M1_Q4);
- q = t.multiply(q).add(INV_GAMMA1P_M1_Q3);
- q = t.multiply(q).add(INV_GAMMA1P_M1_Q2);
- q = t.multiply(q).add(INV_GAMMA1P_M1_Q1);
- q = t.multiply(q).add(1.);
- T c = one.newInstance(INV_GAMMA1P_M1_C13).add(t.multiply(p.divide(q)));
- c = t.multiply(c).add(INV_GAMMA1P_M1_C12);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C11);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C10);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C9);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C8);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C7);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C6);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C5);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C4);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C3);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C2);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C1);
- c = t.multiply(c).add(INV_GAMMA1P_M1_C0);
- if (x.getReal() > 0.5) {
- ret = t.divide(x).multiply(c.subtract(1));
- }
- else {
- ret = x.multiply(c);
- }
- }
- return ret;
- }
- /**
- * Returns the value of log Γ(1 + x) for -0.5 ≤ x ≤ 1.5.
- * This implementation is based on the double precision implementation in
- * the <em>NSWC Library of Mathematics Subroutines</em>, {@code DGMLN1}.
- *
- * @param x Argument.
- * @return The value of {@code log(Gamma(1 + x))}.
- * @throws MathIllegalArgumentException if {@code x < -0.5}.
- * @throws MathIllegalArgumentException if {@code x > 1.5}.
- */
- public static double logGamma1p(final double x)
- throws MathIllegalArgumentException {
- if (x < -0.5) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
- x, -0.5);
- }
- if (x > 1.5) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE,
- x, 1.5);
- }
- return -FastMath.log1p(invGamma1pm1(x));
- }
- /**
- * Returns the value of log Γ(1 + x) for -0.5 ≤ x ≤ 1.5.
- * This implementation is based on the double precision implementation in
- * the <em>NSWC Library of Mathematics Subroutines</em>, {@code DGMLN1}.
- *
- * @param x Argument.
- * @param <T> Type of the field elements.
- * @return The value of {@code log(Gamma(1 + x))}.
- * @throws MathIllegalArgumentException if {@code x < -0.5}.
- * @throws MathIllegalArgumentException if {@code x > 1.5}.
- */
- public static <T extends CalculusFieldElement<T>> T logGamma1p(final T x)
- throws MathIllegalArgumentException {
- if (x.getReal() < -0.5) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
- x, -0.5);
- }
- if (x.getReal() > 1.5) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE,
- x, 1.5);
- }
- return invGamma1pm1(x).log1p().negate();
- }
- /**
- * Returns the value of Γ(x). Based on the <em>NSWC Library of
- * Mathematics Subroutines</em> double precision implementation,
- * {@code DGAMMA}.
- *
- * @param x Argument.
- * @return the value of {@code Gamma(x)}.
- */
- public static double gamma(final double x) {
- if ((x == FastMath.rint(x)) && (x <= 0.0)) {
- return Double.NaN;
- }
- final double ret;
- final double absX = FastMath.abs(x);
- if (absX <= 20.0) {
- if (x >= 1.0) {
- /*
- * From the recurrence relation
- * Gamma(x) = (x - 1) * ... * (x - n) * Gamma(x - n),
- * then
- * Gamma(t) = 1 / [1 + invGamma1pm1(t - 1)],
- * where t = x - n. This means that t must satisfy
- * -0.5 <= t - 1 <= 1.5.
- */
- double prod = 1.0;
- double t = x;
- while (t > 2.5) {
- t -= 1.0;
- prod *= t;
- }
- ret = prod / (1.0 + invGamma1pm1(t - 1.0));
- } else {
- /*
- * From the recurrence relation
- * Gamma(x) = Gamma(x + n + 1) / [x * (x + 1) * ... * (x + n)]
- * then
- * Gamma(x + n + 1) = 1 / [1 + invGamma1pm1(x + n)],
- * which requires -0.5 <= x + n <= 1.5.
- */
- double prod = x;
- double t = x;
- while (t < -0.5) {
- t += 1.0;
- prod *= t;
- }
- ret = 1.0 / (prod * (1.0 + invGamma1pm1(t)));
- }
- } else {
- final double y = absX + LANCZOS_G + 0.5;
- final double gammaAbs = SQRT_TWO_PI / absX *
- FastMath.pow(y, absX + 0.5) *
- FastMath.exp(-y) * lanczos(absX);
- if (x > 0.0) {
- ret = gammaAbs;
- } else {
- /*
- * From the reflection formula
- * Gamma(x) * Gamma(1 - x) * sin(pi * x) = pi,
- * and the recurrence relation
- * Gamma(1 - x) = -x * Gamma(-x),
- * it is found
- * Gamma(x) = -pi / [x * sin(pi * x) * Gamma(-x)].
- */
- ret = -FastMath.PI /
- (x * FastMath.sin(FastMath.PI * x) * gammaAbs);
- }
- }
- return ret;
- }
- /**
- * Returns the value of Γ(x). Based on the <em>NSWC Library of
- * Mathematics Subroutines</em> double precision implementation,
- * {@code DGAMMA}.
- *
- * @param x Argument.
- * @param <T> Type of the field elements.
- * @return the value of {@code Gamma(x)}.
- */
- public static <T extends CalculusFieldElement<T>> T gamma(final T x) {
- final T one = x.getField().getOne();
- if ((x.getReal() == x.rint().getReal()) && (x.getReal() <= 0.0)) {
- return one.multiply(Double.NaN);
- }
- final T ret;
- final T absX = x.abs();
- if (absX.getReal() <= 20.0) {
- if (x.getReal() >= 1.0) {
- /*
- * From the recurrence relation
- * Gamma(x) = (x - 1) * ... * (x - n) * Gamma(x - n),
- * then
- * Gamma(t) = 1 / [1 + invGamma1pm1(t - 1)],
- * where t = x - n. This means that t must satisfy
- * -0.5 <= t - 1 <= 1.5.
- */
- T prod = one;
- T t = x;
- while (t.getReal() > 2.5) {
- t = t.subtract(1.0);
- prod = prod.multiply(t);
- }
- ret = prod.divide(invGamma1pm1(t.subtract(1.0)).add(1.0));
- }
- else {
- /*
- * From the recurrence relation
- * Gamma(x) = Gamma(x + n + 1) / [x * (x + 1) * ... * (x + n)]
- * then
- * Gamma(x + n + 1) = 1 / [1 + invGamma1pm1(x + n)],
- * which requires -0.5 <= x + n <= 1.5.
- */
- T prod = x;
- T t = x;
- while (t.getReal() < -0.5) {
- t = t.add(1.0);
- prod = prod.multiply(t);
- }
- ret = prod.multiply(invGamma1pm1(t).add(1)).reciprocal();
- }
- }
- else {
- final T y = absX.add(LANCZOS_G + 0.5);
- final T gammaAbs = absX.reciprocal().multiply(SQRT_TWO_PI).multiply(y.pow(absX.add(0.5)))
- .multiply(y.negate().exp()).multiply(lanczos(absX));
- if (x.getReal() > 0.0) {
- ret = gammaAbs;
- }
- else {
- /*
- * From the reflection formula
- * Gamma(x) * Gamma(1 - x) * sin(pi * x) = pi,
- * and the recurrence relation
- * Gamma(1 - x) = -x * Gamma(-x),
- * it is found
- * Gamma(x) = -pi / [x * sin(pi * x) * Gamma(-x)].
- */
- ret = x.multiply(x.multiply(FastMath.PI).sin()).multiply(gammaAbs).reciprocal().multiply(-FastMath.PI);
- }
- }
- return ret;
- }
- }