NearZeroParameter.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.special.elliptic.jacobi;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.SinCos;
/** Algorithm for computing the principal Jacobi functions for parameters slightly above zero.
* <p>
* The algorithm for evaluating the functions is based on approximation
* in terms of circular functions. It is given in Abramowitz and Stegun,
* sections 16.13.
* </p>
* @since 2.0
*/
class NearZeroParameter extends JacobiElliptic {
/** Simple constructor.
* @param m parameter of the Jacobi elliptic function (must be zero or slightly positive here)
*/
NearZeroParameter(final double m) {
super(m);
}
/** {@inheritDoc} */
@Override
public CopolarN valuesN(final double u) {
final SinCos sc = FastMath.sinCos(u);
final double factor = 0.25 * getM() * (u - sc.sin() * sc.cos());
return new CopolarN(sc.sin() - factor * sc.cos(), // equation 16.13.1
sc.cos() + factor * sc.sin(), // equation 16.13.2
1 - 0.5 * getM() * sc.sin() * sc.sin()); // equation 16.13.3
}
}