NearOneParameter.java

  1. /*
  2.  * Licensed to the Hipparchus project under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *      https://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.hipparchus.special.elliptic.jacobi;

  18. import org.hipparchus.util.FastMath;
  19. import org.hipparchus.util.SinhCosh;

  20. /** Algorithm for computing the principal Jacobi functions for parameters slightly below one.
  21.  * <p>
  22.  * The algorithm for evaluating the functions is based on approximation
  23.  * in terms of hyperbolic functions. It is given in Abramowitz and Stegun,
  24.  * sections 16.15.
  25.  * </p>
  26.  * @since 2.0
  27.  */
  28. class NearOneParameter extends JacobiElliptic {

  29.     /** Complementary parameter of the Jacobi elliptic function. */
  30.     private final double m1;

  31.     /** Simple constructor.
  32.      * @param m parameter of the Jacobi elliptic function (must be one or slightly below one here)
  33.      */
  34.     NearOneParameter(final double m) {
  35.         super(m);
  36.         this.m1 = 1.0 - m;
  37.     }

  38.     /** {@inheritDoc} */
  39.     @Override
  40.     public CopolarN valuesN(final double u) {
  41.         final SinhCosh sch  = FastMath.sinhCosh(u);
  42.         final double sech   =  1.0 / sch.cosh();
  43.         final double t      = sch.sinh() * sech;
  44.         final double factor = 0.25 * m1 * (sch.sinh() * sch.cosh()  - u) * sech;
  45.         return new CopolarN(t + factor * sech,  // equation 16.15.1
  46.                             sech - factor * t,  // equation 16.15.2
  47.                             sech + factor * t); // equation 16.15.3
  48.     }

  49. }