JacobiEllipticBuilder.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.special.elliptic.jacobi;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.complex.Complex;
import org.hipparchus.complex.FieldComplex;
/** Builder for algorithms compmuting Jacobi elliptic functions.
* <p>
* The Jacobi elliptic functions are related to elliptic integrals.
* </p>
* <p>
* There are different conventions to interpret the arguments of
* Jacobi elliptic functions. The first argument may be the amplitude φ,
* but is more often the variable u (with sn(u) = sin(φ) and cn(u) = cos(φ)).
* The second argument is either the modulus k or the parameter m with m = k².
* In Hipparchus, we adopted the convention to use u and m.
* </p>
* @since 2.0
*/
public class JacobiEllipticBuilder {
/** Threshold near 0 for using specialized algorithm. */
private static final double NEAR_ZERO = 1.0e-9;
/** Threshold near 1 for using specialized algorithm. */
private static final double NEAR_ONE = 1.0 - NEAR_ZERO;
/** Private constructor for utility class.
*/
private JacobiEllipticBuilder() {
// nothing to do
}
/** Build an algorithm for computing Jacobi elliptic functions.
* @param m parameter of the Jacobi elliptic function
* @return selected algorithm
*/
public static JacobiElliptic build(final double m) {
if (m < 0) {
return new NegativeParameter(m);
} else if (m > 1) {
return new BigParameter(m);
} else if (m < NEAR_ZERO) {
return new NearZeroParameter(m);
} else if (m > NEAR_ONE) {
return new NearOneParameter(m);
} else {
return new BoundedParameter(m);
}
}
/** Build an algorithm for computing Jacobi elliptic functions.
* @param m parameter of the Jacobi elliptic function
* @param <T> type of the field elements
* @return selected algorithm
*/
public static <T extends CalculusFieldElement<T>> FieldJacobiElliptic<T> build(final T m) {
if (m.getReal() < 0) {
return new FieldNegativeParameter<>(m);
} else if (m.getReal() > 1) {
return new FieldBigParameter<>(m);
} else if (m.getReal() < NEAR_ZERO) {
return new FieldNearZeroParameter<>(m);
} else if (m.getReal() > NEAR_ONE) {
return new FieldNearOneParameter<>(m);
} else {
return new FieldBoundedParameter<>(m);
}
}
/** Build an algorithm for computing Jacobi elliptic functions.
* @param m parameter of the Jacobi elliptic function
* @return selected algorithm
*/
public static FieldJacobiElliptic<Complex> build(final Complex m) {
return new ComplexParameter(m);
}
/** Build an algorithm for computing Jacobi elliptic functions.
* @param m parameter of the Jacobi elliptic function
* @param <T> type of the field elements
* @return selected algorithm
*/
public static <T extends CalculusFieldElement<T>> FieldJacobiElliptic<FieldComplex<T>> build(final FieldComplex<T> m) {
return new FieldComplexParameter<>(m);
}
}