FieldNegativeParameter.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.special.elliptic.jacobi;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.util.FastMath;
- /** Algorithm for computing the principal Jacobi functions for negative parameter m.
- * <p>
- * The rules for negative parameter change are given in Abramowitz and Stegun, section 16.10.
- * </p>
- * @param <T> the type of the field elements
- * @since 2.0
- */
- class FieldNegativeParameter<T extends CalculusFieldElement<T>> extends FieldJacobiElliptic<T> {
- /** Algorithm to use for the positive parameter. */
- private final FieldJacobiElliptic<T> algorithm;
- /** Input scaling factor. */
- private final T inputScale;
- /** output scaling factor. */
- private final T outputScale;
- /** Simple constructor.
- * @param m parameter of the Jacobi elliptic function (must be negative here)
- */
- FieldNegativeParameter(final T m) {
- super(m);
- final T omM = m.getField().getOne().subtract(m);
- algorithm = JacobiEllipticBuilder.build(m.negate().divide(omM));
- inputScale = FastMath.sqrt(omM);
- outputScale = inputScale.reciprocal();
- }
- /** {@inheritDoc} */
- @Override
- public FieldCopolarN<T> valuesN(final T u) {
- final FieldCopolarD<T> trioD = new FieldCopolarD<>(algorithm.valuesN(u.multiply(inputScale)));
- return new FieldCopolarN<>(outputScale.multiply(trioD.sd()), trioD.cd(), trioD.nd());
- }
- }