FieldJacobiElliptic.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.special.elliptic.jacobi;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.special.elliptic.carlson.CarlsonEllipticIntegral;
- import org.hipparchus.special.elliptic.legendre.LegendreEllipticIntegral;
- import org.hipparchus.util.FastMath;
- /** Computation of Jacobi elliptic functions.
- * The Jacobi elliptic functions are related to elliptic integrals.
- * @param <T> the type of the field elements
- * @since 2.0
- */
- public abstract class FieldJacobiElliptic<T extends CalculusFieldElement<T>> {
- /** Parameter of the function. */
- private final T m;
- /** Simple constructor.
- * @param m parameter of the function
- */
- protected FieldJacobiElliptic(final T m) {
- this.m = m;
- }
- /** Get the parameter of the function.
- * @return parameter of the function
- */
- public T getM() {
- return m;
- }
- /** Evaluate the three principal Jacobi elliptic functions with pole at point n in Glaisher’s Notation.
- * @param u argument of the functions
- * @return copolar trio containing the three principal Jacobi
- * elliptic functions {@code sn(u|m)}, {@code cn(u|m)}, and {@code dn(u|m)}.
- */
- public abstract FieldCopolarN<T> valuesN(T u);
- /** Evaluate the three principal Jacobi elliptic functions with pole at point n in Glaisher’s Notation.
- * @param u argument of the functions
- * @return copolar trio containing the three principal Jacobi
- * elliptic functions {@code sn(u|m)}, {@code cn(u|m)}, and {@code dn(u|m)}.
- */
- public FieldCopolarN<T> valuesN(final double u) {
- return valuesN(m.newInstance(u));
- }
- /** Evaluate the three subsidiary Jacobi elliptic functions with pole at point s in Glaisher’s Notation.
- * @param u argument of the functions
- * @return copolar trio containing the three subsidiary Jacobi
- * elliptic functions {@code cs(u|m)}, {@code ds(u|m)} and {@code ns(u|m)}.
- */
- public FieldCopolarS<T> valuesS(final T u) {
- return new FieldCopolarS<>(valuesN(u));
- }
- /** Evaluate the three subsidiary Jacobi elliptic functions with pole at point s in Glaisher’s Notation.
- * @param u argument of the functions
- * @return copolar trio containing the three subsidiary Jacobi
- * elliptic functions {@code cs(u|m)}, {@code ds(u|m)} and {@code ns(u|m)}.
- */
- public FieldCopolarS<T> valuesS(final double u) {
- return new FieldCopolarS<>(valuesN(u));
- }
- /** Evaluate the three subsidiary Jacobi elliptic functions with pole at point c in Glaisher’s Notation.
- * @param u argument of the functions
- * @return copolar trio containing the three subsidiary Jacobi
- * elliptic functions {@code dc(u|m)}, {@code nc(u|m)}, and {@code sc(u|m)}.
- */
- public FieldCopolarC<T> valuesC(final T u) {
- return new FieldCopolarC<>(valuesN(u));
- }
- /** Evaluate the three subsidiary Jacobi elliptic functions with pole at point c in Glaisher’s Notation.
- * @param u argument of the functions
- * @return copolar trio containing the three subsidiary Jacobi
- * elliptic functions {@code dc(u|m)}, {@code nc(u|m)}, and {@code sc(u|m)}.
- */
- public FieldCopolarC<T> valuesC(final double u) {
- return new FieldCopolarC<>(valuesN(u));
- }
- /** Evaluate the three subsidiary Jacobi elliptic functions with pole at point d in Glaisher’s Notation.
- * @param u argument of the functions
- * @return copolar trio containing the three subsidiary Jacobi
- * elliptic functions {@code nd(u|m)}, {@code sd(u|m)}, and {@code cd(u|m)}.
- */
- public FieldCopolarD<T> valuesD(final T u) {
- return new FieldCopolarD<>(valuesN(u));
- }
- /** Evaluate the three subsidiary Jacobi elliptic functions with pole at point d in Glaisher’s Notation.
- * @param u argument of the functions
- * @return copolar trio containing the three subsidiary Jacobi
- * elliptic functions {@code nd(u|m)}, {@code sd(u|m)}, and {@code cd(u|m)}.
- */
- public FieldCopolarD<T> valuesD(final double u) {
- return new FieldCopolarD<>(valuesN(u));
- }
- /** Evaluate inverse of Jacobi elliptic function sn.
- * @param x value of Jacobi elliptic function {@code sn(u|m)}
- * @return u such that {@code x=sn(u|m)}
- * @since 2.1
- */
- public T arcsn(final T x) {
- // p = n, q = c, r = d, see DLMF 19.25.29 for evaluating Δ(q, p) and Δ(r, p)
- return arcsp(x, x.getField().getOne().negate(), getM().negate());
- }
- /** Evaluate inverse of Jacobi elliptic function sn.
- * @param x value of Jacobi elliptic function {@code sn(u|m)}
- * @return u such that {@code x=sn(u|m)}
- * @since 2.1
- */
- public T arcsn(final double x) {
- return arcsn(getM().getField().getZero().newInstance(x));
- }
- /** Evaluate inverse of Jacobi elliptic function cn.
- * @param x value of Jacobi elliptic function {@code cn(u|m)}
- * @return u such that {@code x=cn(u|m)}
- * @since 2.1
- */
- public T arccn(final T x) {
- // p = c, q = n, r = d, see DLMF 19.25.29 for evaluating Δ(q, p) and Δ(r, q)
- return arcpqNoDivision(x, x.getField().getOne(), getM().negate());
- }
- /** Evaluate inverse of Jacobi elliptic function cn.
- * @param x value of Jacobi elliptic function {@code cn(u|m)}
- * @return u such that {@code x=cn(u|m)}
- * @since 2.1
- */
- public T arccn(final double x) {
- return arccn(getM().getField().getZero().newInstance(x));
- }
- /** Evaluate inverse of Jacobi elliptic function dn.
- * @param x value of Jacobi elliptic function {@code dn(u|m)}
- * @return u such that {@code x=dn(u|m)}
- * @since 2.1
- */
- public T arcdn(final T x) {
- // p = d, q = n, r = c, see DLMF 19.25.29 for evaluating Δ(q, p) and Δ(r, q)
- return arcpqNoDivision(x, getM(), x.getField().getOne().negate());
- }
- /** Evaluate inverse of Jacobi elliptic function dn.
- * @param x value of Jacobi elliptic function {@code dn(u|m)}
- * @return u such that {@code x=dn(u|m)}
- * @since 2.1
- */
- public T arcdn(final double x) {
- return arcdn(getM().getField().getZero().newInstance(x));
- }
- /** Evaluate inverse of Jacobi elliptic function cs.
- * @param x value of Jacobi elliptic function {@code cs(u|m)}
- * @return u such that {@code x=cs(u|m)}
- * @since 2.1
- */
- public T arccs(final T x) {
- // p = c, q = n, r = d, see DLMF 19.25.29 for evaluating Δ(q, p) and Δ(r, p)
- return arcps(x, x.getField().getOne(), getM().subtract(1).negate());
- }
- /** Evaluate inverse of Jacobi elliptic function cs.
- * @param x value of Jacobi elliptic function {@code cs(u|m)}
- * @return u such that {@code x=cs(u|m)}
- * @since 2.1
- */
- public T arccs(final double x) {
- return arccs(getM().getField().getZero().newInstance(x));
- }
- /** Evaluate inverse of Jacobi elliptic function ds.
- * @param x value of Jacobi elliptic function {@code ds(u|m)}
- * @return u such that {@code x=ds(u|m)}
- * @since 2.1
- */
- public T arcds(final T x) {
- // p = d, q = c, r = n, see DLMF 19.25.29 for evaluating Δ(q, p) and Δ(r, p)
- return arcps(x, getM().subtract(1), getM());
- }
- /** Evaluate inverse of Jacobi elliptic function ds.
- * @param x value of Jacobi elliptic function {@code ds(u|m)}
- * @return u such that {@code x=ds(u|m)}
- * @since 2.1
- */
- public T arcds(final double x) {
- return arcds(getM().getField().getZero().newInstance(x));
- }
- /** Evaluate inverse of Jacobi elliptic function ns.
- * @param x value of Jacobi elliptic function {@code ns(u|m)}
- * @return u such that {@code x=ns(u|m)}
- * @since 2.1
- */
- public T arcns(final T x) {
- // p = n, q = c, r = d, see DLMF 19.25.29 for evaluating Δ(q, p) and Δ(r, p)
- return arcps(x, x.getField().getOne().negate(), getM().negate());
- }
- /** Evaluate inverse of Jacobi elliptic function ns.
- * @param x value of Jacobi elliptic function {@code ns(u|m)}
- * @return u such that {@code x=ns(u|m)}
- * @since 2.1
- */
- public T arcns(final double x) {
- return arcns(getM().getField().getZero().newInstance(x));
- }
- /** Evaluate inverse of Jacobi elliptic function dc.
- * @param x value of Jacobi elliptic function {@code dc(u|m)}
- * @return u such that {@code x=dc(u|m)}
- * @since 2.1
- */
- public T arcdc(final T x) {
- // p = d, q = c, r = n, see DLMF 19.25.29 for evaluating Δ(q, p) and Δ(r, q)
- return arcpq(x, getM().subtract(1), x.getField().getOne());
- }
- /** Evaluate inverse of Jacobi elliptic function dc.
- * @param x value of Jacobi elliptic function {@code dc(u|m)}
- * @return u such that {@code x=dc(u|m)}
- * @since 2.1
- */
- public T arcdc(final double x) {
- return arcdc(getM().getField().getZero().newInstance(x));
- }
- /** Evaluate inverse of Jacobi elliptic function nc.
- * @param x value of Jacobi elliptic function {@code nc(u|m)}
- * @return u such that {@code x=nc(u|m)}
- * @since 2.1
- */
- public T arcnc(final T x) {
- // p = n, q = c, r = d, see DLMF 19.25.29 for evaluating Δ(q, p) and Δ(r, q)
- return arcpq(x, x.getField().getOne().negate(), getM().subtract(1).negate());
- }
- /** Evaluate inverse of Jacobi elliptic function nc.
- * @param x value of Jacobi elliptic function {@code nc(u|m)}
- * @return u such that {@code x=nc(u|m)}
- * @since 2.1
- */
- public T arcnc(final double x) {
- return arcnc(getM().getField().getZero().newInstance(x));
- }
- /** Evaluate inverse of Jacobi elliptic function sc.
- * @param x value of Jacobi elliptic function {@code sc(u|m)}
- * @return u such that {@code x=sc(u|m)}
- * @since 2.1
- */
- public T arcsc(final T x) {
- // p = c, q = n, r = d, see DLMF 19.25.29 for evaluating Δ(q, p) and Δ(r, p)
- return arcsp(x, x.getField().getOne(), getM().subtract(1).negate());
- }
- /** Evaluate inverse of Jacobi elliptic function sc.
- * @param x value of Jacobi elliptic function {@code sc(u|m)}
- * @return u such that {@code x=sc(u|m)}
- * @since 2.1
- */
- public T arcsc(final double x) {
- return arcsc(getM().getField().getZero().newInstance(x));
- }
- /** Evaluate inverse of Jacobi elliptic function nd.
- * @param x value of Jacobi elliptic function {@code nd(u|m)}
- * @return u such that {@code x=nd(u|m)}
- * @since 2.1
- */
- public T arcnd(final T x) {
- // p = n, q = d, r = c, see DLMF 19.25.29 for evaluating Δ(q, p) and Δ(r, q)
- return arcpq(x, getM().negate(), getM().subtract(1));
- }
- /** Evaluate inverse of Jacobi elliptic function nd.
- * @param x value of Jacobi elliptic function {@code nd(u|m)}
- * @return u such that {@code x=nd(u|m)}
- * @since 2.1
- */
- public T arcnd(final double x) {
- return arcnd(getM().getField().getZero().newInstance(x));
- }
- /** Evaluate inverse of Jacobi elliptic function sd.
- * @param x value of Jacobi elliptic function {@code sd(u|m)}
- * @return u such that {@code x=sd(u|m)}
- * @since 2.1
- */
- public T arcsd(final T x) {
- // p = d, q = n, r = c, see DLMF 19.25.29 for evaluating Δ(q, p) and Δ(r, p)
- return arcsp(x, getM(), getM().subtract(1));
- }
- /** Evaluate inverse of Jacobi elliptic function sd.
- * @param x value of Jacobi elliptic function {@code sd(u|m)}
- * @return u such that {@code x=sd(u|m)}
- * @since 2.1
- */
- public T arcsd(final double x) {
- return arcsd(getM().getField().getZero().newInstance(x));
- }
- /** Evaluate inverse of Jacobi elliptic function cd.
- * @param x value of Jacobi elliptic function {@code cd(u|m)}
- * @return u such that {@code x=cd(u|m)}
- * @since 2.1
- */
- public T arccd(final T x) {
- // p = c, q = d, r = n, see DLMF 19.25.29 for evaluating Δ(q, p) and Δ(r, q)
- return arcpq(x, getM().subtract(1).negate(), getM());
- }
- /** Evaluate inverse of Jacobi elliptic function cd.
- * @param x value of Jacobi elliptic function {@code cd(u|m)}
- * @return u such that {@code x=cd(u|m)}
- * @since 2.1
- */
- public T arccd(final double x) {
- return arccd(getM().getField().getZero().newInstance(x));
- }
- /** Evaluate inverse of Jacobi elliptic function ps.
- * <p>
- * Here p, q, r are any permutation of the letters c, d, n.
- * </p>
- * @param x value of Jacobi elliptic function {@code ps(u|m)}
- * @param deltaQP Δ(q, p) = qs²(u|m) - ps²(u|m) (equation 19.5.28 of DLMF)
- * @param deltaRP Δ(r, p) = rs²(u|m) - ps²(u|m) (equation 19.5.28 of DLMF)
- * @return u such that {@code x=ps(u|m)}
- * @since 2.1
- */
- private T arcps(final T x, final T deltaQP, final T deltaRP) {
- // see equation 19.25.32 in Digital Library of Mathematical Functions
- // https://dlmf.nist.gov/19.25.E32
- final T x2 = x.square();
- final T rf = CarlsonEllipticIntegral.rF(x2, x2.add(deltaQP), x2.add(deltaRP));
- return FastMath.copySign(1.0, rf.getReal()) * FastMath.copySign(1.0, x.getReal()) < 0 ?
- rf.negate() : rf;
- }
- /** Evaluate inverse of Jacobi elliptic function sp.
- * <p>
- * Here p, q, r are any permutation of the letters c, d, n.
- * </p>
- * @param x value of Jacobi elliptic function {@code sp(u|m)}
- * @param deltaQP Δ(q, p) = qs²(u|m) - ps²(u|m) (equation 19.5.28 of DLMF)
- * @param deltaRP Δ(r, p) = rs²(u|m) - ps²(u|m) (equation 19.5.28 of DLMF)
- * @return u such that {@code x=sp(u|m)}
- * @since 2.1
- */
- private T arcsp(final T x, final T deltaQP, final T deltaRP) {
- // see equation 19.25.33 in Digital Library of Mathematical Functions
- // https://dlmf.nist.gov/19.25.E33
- final T x2 = x.square();
- return x.multiply(CarlsonEllipticIntegral.rF(x.getField().getOne(),
- deltaQP.multiply(x2).add(1),
- deltaRP.multiply(x2).add(1)));
- }
- /** Evaluate inverse of Jacobi elliptic function pq.
- * <p>
- * Here p, q, r are any permutation of the letters c, d, n.
- * </p>
- * @param x value of Jacobi elliptic function {@code pq(u|m)}
- * @param deltaQP Δ(q, p) = qs²(u|m) - ps²(u|m) (equation 19.5.28 of DLMF)
- * @param deltaRQ Δ(r, q) = rs²(u|m) - qs²(u|m) (equation 19.5.28 of DLMF)
- * @return u such that {@code x=pq(u|m)}
- * @since 2.1
- */
- private T arcpq(final T x, final T deltaQP, final T deltaRQ) {
- // see equation 19.25.34 in Digital Library of Mathematical Functions
- // https://dlmf.nist.gov/19.25.E34
- final T x2 = x.square();
- final T w = x2.subtract(1).negate().divide(deltaQP);
- final T rf = CarlsonEllipticIntegral.rF(x2, x.getField().getOne(), deltaRQ.multiply(w).add(1));
- final T positive = w.sqrt().multiply(rf);
- return x.getReal() < 0 ? LegendreEllipticIntegral.bigK(getM()).multiply(2).subtract(positive) : positive;
- }
- /** Evaluate inverse of Jacobi elliptic function pq.
- * <p>
- * Here p, q, r are any permutation of the letters c, d, n.
- * </p>
- * <p>
- * This computed the same thing as {@link #arcpq(CalculusFieldElement, CalculusFieldElement, CalculusFieldElement)}
- * but uses the homogeneity property Rf(x, y, z) = Rf(ax, ay, az) / √a to get rid of the division
- * by deltaRQ. This division induces problems in the complex case as it may lose the sign
- * of zero for values exactly along the real or imaginary axis, hence perturbing branch cuts.
- * </p>
- * @param x value of Jacobi elliptic function {@code pq(u|m)}
- * @param deltaQP Δ(q, p) = qs²(u|m) - ps²(u|m) (equation 19.5.28 of DLMF)
- * @param deltaRQ Δ(r, q) = rs²(u|m) - qs²(u|m) (equation 19.5.28 of DLMF)
- * @return u such that {@code x=pq(u|m)}
- * @since 2.1
- */
- private T arcpqNoDivision(final T x, final T deltaQP, final T deltaRQ) {
- // see equation 19.25.34 in Digital Library of Mathematical Functions
- // https://dlmf.nist.gov/19.25.E34
- final T x2 = x.square();
- final T wDeltaQP = x2.subtract(1).negate();
- final T rf = CarlsonEllipticIntegral.rF(x2.multiply(deltaQP), deltaQP, deltaRQ.multiply(wDeltaQP).add(deltaQP));
- final T positive = wDeltaQP.sqrt().multiply(rf);
- return FastMath.copySign(1.0, x.getReal()) < 0 ?
- LegendreEllipticIntegral.bigK(getM()).multiply(2).subtract(positive) :
- positive;
- }
- }