FieldComplexParameter.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.special.elliptic.jacobi;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.complex.FieldComplex;
- import org.hipparchus.special.elliptic.legendre.LegendreEllipticIntegral;
- import org.hipparchus.util.FastMath;
- /** Algorithm for computing the principal Jacobi functions for complex parameter m.
- * @param <T> the type of the field elements
- * @since 2.0
- */
- class FieldComplexParameter<T extends CalculusFieldElement<T>> extends FieldJacobiElliptic<FieldComplex<T>> {
- /** Jacobi θ functions. */
- private final FieldJacobiTheta<FieldComplex<T>> jacobiTheta;
- /** Quarter period K. */
- private final FieldComplex<T> bigK;
- /** Quarter period iK'. */
- private final FieldComplex<T> iBigKPrime;
- /** Real periodic factor for K. */
- private final T rK;
- /** Imaginary periodic factor for K. */
- private final T iK;
- /** Real periodic factor for iK'. */
- private final T rKPrime;
- /** Imaginary periodic factor for iK'. */
- private final T iKPrime;
- /** Value of Jacobi θ functions at origin. */
- private final FieldTheta<FieldComplex<T>> t0;
- /** Scaling factor. */
- private final FieldComplex<T> scaling;
- /** Simple constructor.
- * @param m parameter of the Jacobi elliptic function
- */
- FieldComplexParameter(final FieldComplex<T> m) {
- super(m);
- // compute nome
- final FieldComplex<T> q = LegendreEllipticIntegral.nome(m);
- // compute periodic factors such that
- // z = 4K [rK Re(z) + iK Im(z)] + 4K' [rK' Re(z) + iK' Im(z)]
- bigK = LegendreEllipticIntegral.bigK(m);
- iBigKPrime = LegendreEllipticIntegral.bigKPrime(m).multiplyPlusI();
- final T inverse = bigK.getRealPart().multiply(iBigKPrime.getImaginaryPart()).
- subtract(bigK.getImaginaryPart().multiply(iBigKPrime.getRealPart())).
- multiply(4).reciprocal();
- this.rK = iBigKPrime.getImaginaryPart().multiply(inverse);
- this.iK = iBigKPrime.getRealPart().multiply(inverse).negate();
- this.rKPrime = bigK.getImaginaryPart().multiply(inverse).negate();
- this.iKPrime = bigK.getRealPart().multiply(inverse);
- // prepare underlying Jacobi θ functions
- this.jacobiTheta = new FieldJacobiTheta<>(q);
- this.t0 = jacobiTheta.values(m.getField().getZero());
- this.scaling = bigK.reciprocal().multiply(m.getPi().multiply(0.5));
- }
- /** {@inheritDoc}
- * <p>
- * The algorithm for evaluating the functions is based on {@link FieldJacobiTheta
- * Jacobi theta functions}.
- * </p>
- */
- @Override
- public FieldCopolarN<FieldComplex<T>> valuesN(FieldComplex<T> u) {
- // perform argument reduction
- final T cK = rK.multiply(u.getRealPart()).add(iK.multiply(u.getImaginaryPart()));
- final T cKPrime = rKPrime.multiply(u.getRealPart()).add(iKPrime.multiply(u.getImaginaryPart()));
- final FieldComplex<T> reducedU = u.linearCombination(1.0, u,
- -4 * FastMath.rint(cK.getReal()), bigK,
- -4 * FastMath.rint(cKPrime.getReal()), iBigKPrime);
- // evaluate Jacobi θ functions at argument
- final FieldTheta<FieldComplex<T>> tZ = jacobiTheta.values(reducedU.multiply(scaling));
- // convert to Jacobi elliptic functions
- final FieldComplex<T> sn = t0.theta3().multiply(tZ.theta1()).divide(t0.theta2().multiply(tZ.theta4()));
- final FieldComplex<T> cn = t0.theta4().multiply(tZ.theta2()).divide(t0.theta2().multiply(tZ.theta4()));
- final FieldComplex<T> dn = t0.theta4().multiply(tZ.theta3()).divide(t0.theta3().multiply(tZ.theta4()));
- return new FieldCopolarN<>(sn, cn, dn);
- }
- }