ComplexParameter.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.special.elliptic.jacobi;
import org.hipparchus.complex.Complex;
import org.hipparchus.special.elliptic.legendre.LegendreEllipticIntegral;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathUtils;
/** Algorithm for computing the principal Jacobi functions for complex parameter m.
* @since 2.0
*/
class ComplexParameter extends FieldJacobiElliptic<Complex> {
/** Jacobi θ functions. */
private final FieldJacobiTheta<Complex> jacobiTheta;
/** Quarter period K. */
private final Complex bigK;
/** Quarter period iK'. */
private final Complex iBigKPrime;
/** Real periodic factor for K. */
private final double rK;
/** Imaginary periodic factor for K. */
private final double iK;
/** Real periodic factor for iK'. */
private final double rKPrime;
/** Imaginary periodic factor for iK'. */
private final double iKPrime;
/** Value of Jacobi θ functions at origin. */
private final FieldTheta<Complex> t0;
/** Scaling factor. */
private final Complex scaling;
/** Simple constructor.
* @param m parameter of the Jacobi elliptic function
*/
ComplexParameter(final Complex m) {
super(m);
// compute nome
final Complex q = LegendreEllipticIntegral.nome(m);
// compute periodic factors such that
// z = 4 K [rK Re(z) + iK Im(z)] + 4i K' [rK' Re(z) + iK' Im(z)]
bigK = LegendreEllipticIntegral.bigK(m);
iBigKPrime = LegendreEllipticIntegral.bigKPrime(m).multiplyPlusI();
final double inverse = 0.25 /
(bigK.getRealPart() * iBigKPrime.getImaginaryPart() -
bigK.getImaginaryPart() * iBigKPrime.getRealPart());
this.rK = iBigKPrime.getImaginaryPart() * inverse;
this.iK = iBigKPrime.getRealPart() * -inverse;
this.rKPrime = bigK.getImaginaryPart() * -inverse;
this.iKPrime = bigK.getRealPart() * inverse;
// prepare underlying Jacobi θ functions
this.jacobiTheta = new FieldJacobiTheta<>(q);
this.t0 = jacobiTheta.values(m.getField().getZero());
this.scaling = bigK.reciprocal().multiply(MathUtils.SEMI_PI);
}
/** {@inheritDoc}
* <p>
* The algorithm for evaluating the functions is based on {@link FieldJacobiTheta
* Jacobi theta functions}.
* </p>
*/
@Override
public FieldCopolarN<Complex> valuesN(Complex u) {
// perform argument reduction
final double cK = rK * u.getRealPart() + iK * u.getImaginaryPart();
final double cKPrime = rKPrime * u.getRealPart() + iKPrime * u.getImaginaryPart();
final Complex reducedU = u.linearCombination(1.0, u,
-4 * FastMath.rint(cK), bigK,
-4 * FastMath.rint(cKPrime), iBigKPrime);
// evaluate Jacobi θ functions at argument
final FieldTheta<Complex> tZ = jacobiTheta.values(reducedU.multiply(scaling));
// convert to Jacobi elliptic functions
final Complex sn = t0.theta3().multiply(tZ.theta1()).divide(t0.theta2().multiply(tZ.theta4()));
final Complex cn = t0.theta4().multiply(tZ.theta2()).divide(t0.theta2().multiply(tZ.theta4()));
final Complex dn = t0.theta4().multiply(tZ.theta3()).divide(t0.theta3().multiply(tZ.theta4()));
return new FieldCopolarN<>(sn, cn, dn);
}
}