ComplexParameter.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.special.elliptic.jacobi;
- import org.hipparchus.complex.Complex;
- import org.hipparchus.special.elliptic.legendre.LegendreEllipticIntegral;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /** Algorithm for computing the principal Jacobi functions for complex parameter m.
- * @since 2.0
- */
- class ComplexParameter extends FieldJacobiElliptic<Complex> {
- /** Jacobi θ functions. */
- private final FieldJacobiTheta<Complex> jacobiTheta;
- /** Quarter period K. */
- private final Complex bigK;
- /** Quarter period iK'. */
- private final Complex iBigKPrime;
- /** Real periodic factor for K. */
- private final double rK;
- /** Imaginary periodic factor for K. */
- private final double iK;
- /** Real periodic factor for iK'. */
- private final double rKPrime;
- /** Imaginary periodic factor for iK'. */
- private final double iKPrime;
- /** Value of Jacobi θ functions at origin. */
- private final FieldTheta<Complex> t0;
- /** Scaling factor. */
- private final Complex scaling;
- /** Simple constructor.
- * @param m parameter of the Jacobi elliptic function
- */
- ComplexParameter(final Complex m) {
- super(m);
- // compute nome
- final Complex q = LegendreEllipticIntegral.nome(m);
- // compute periodic factors such that
- // z = 4 K [rK Re(z) + iK Im(z)] + 4i K' [rK' Re(z) + iK' Im(z)]
- bigK = LegendreEllipticIntegral.bigK(m);
- iBigKPrime = LegendreEllipticIntegral.bigKPrime(m).multiplyPlusI();
- final double inverse = 0.25 /
- (bigK.getRealPart() * iBigKPrime.getImaginaryPart() -
- bigK.getImaginaryPart() * iBigKPrime.getRealPart());
- this.rK = iBigKPrime.getImaginaryPart() * inverse;
- this.iK = iBigKPrime.getRealPart() * -inverse;
- this.rKPrime = bigK.getImaginaryPart() * -inverse;
- this.iKPrime = bigK.getRealPart() * inverse;
- // prepare underlying Jacobi θ functions
- this.jacobiTheta = new FieldJacobiTheta<>(q);
- this.t0 = jacobiTheta.values(m.getField().getZero());
- this.scaling = bigK.reciprocal().multiply(MathUtils.SEMI_PI);
- }
- /** {@inheritDoc}
- * <p>
- * The algorithm for evaluating the functions is based on {@link FieldJacobiTheta
- * Jacobi theta functions}.
- * </p>
- */
- @Override
- public FieldCopolarN<Complex> valuesN(Complex u) {
- // perform argument reduction
- final double cK = rK * u.getRealPart() + iK * u.getImaginaryPart();
- final double cKPrime = rKPrime * u.getRealPart() + iKPrime * u.getImaginaryPart();
- final Complex reducedU = u.linearCombination(1.0, u,
- -4 * FastMath.rint(cK), bigK,
- -4 * FastMath.rint(cKPrime), iBigKPrime);
- // evaluate Jacobi θ functions at argument
- final FieldTheta<Complex> tZ = jacobiTheta.values(reducedU.multiply(scaling));
- // convert to Jacobi elliptic functions
- final Complex sn = t0.theta3().multiply(tZ.theta1()).divide(t0.theta2().multiply(tZ.theta4()));
- final Complex cn = t0.theta4().multiply(tZ.theta2()).divide(t0.theta2().multiply(tZ.theta4()));
- final Complex dn = t0.theta4().multiply(tZ.theta3()).divide(t0.theta3().multiply(tZ.theta4()));
- return new FieldCopolarN<>(sn, cn, dn);
- }
- }