BigParameter.java

  1. /*
  2.  * Licensed to the Hipparchus project under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *      https://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.hipparchus.special.elliptic.jacobi;

  18. import org.hipparchus.util.FastMath;

  19. /** Algorithm for computing the principal Jacobi functions for parameter m greater than 1.
  20.  * <p>
  21.  * The rules for reciprocal parameter change are given in Abramowitz and Stegun,
  22.  * sections 16.11 and 17.4.15.
  23.  * </p>
  24.  * @since 2.0
  25.  */
  26. class BigParameter extends JacobiElliptic {

  27.     /** Algorithm to use for the positive parameter. */
  28.     private final JacobiElliptic algorithm;

  29.     /** Input scaling factor. */
  30.     private final double inputScale;

  31.     /** output scaling factor. */
  32.     private final double outputScale;

  33.     /** Simple constructor.
  34.      * @param m parameter of the Jacobi elliptic function (must be greater than 1 here)
  35.      */
  36.     BigParameter(final double m) {
  37.         super(m);
  38.         algorithm   = JacobiEllipticBuilder.build(1.0 / m);
  39.         inputScale  = FastMath.sqrt(m);
  40.         outputScale = 1.0 / inputScale;
  41.     }

  42.     /** {@inheritDoc} */
  43.     @Override
  44.     public CopolarN valuesN(final double u) {
  45.         final CopolarN trioN = algorithm.valuesN(u * inputScale);
  46.         return new CopolarN(outputScale * trioN.sn(), trioN.dn(), trioN.cn());
  47.     }

  48. }