RjRealDuplication.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.special.elliptic.carlson;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- /** Duplication algorithm for Carlson R<sub>J</sub> elliptic integral.
- * @since 2.0
- */
- class RjRealDuplication extends RealDuplication {
- /** Delta product. */
- private double delta;
- /** sₘ iteration parameter. */
- private double sM;
- /** Simple constructor.
- * @param x first symmetric variable of the integral
- * @param y second symmetric variable of the integral
- * @param z third symmetric variable of the integral
- * @param p fourth <em>not</em> symmetric variable of the integral
- * @param delta precomputed value of (p-x)(p-y)(p-z)
- */
- RjRealDuplication(final double x, final double y, final double z, final double p, final double delta) {
- super(x, y, z, p);
- this.delta = delta;
- }
- /** {@inheritDoc} */
- @Override
- protected void initialMeanPoint(final double[] va) {
- va[4] = (va[0] + va[1] + va[2] + va[3] * 2) / 5.0;
- }
- /** {@inheritDoc} */
- @Override
- protected double convergenceCriterion(final double r, final double max) {
- return max / (FastMath.sqrt(FastMath.sqrt(FastMath.sqrt(r * 0.25))));
- }
- /** {@inheritDoc} */
- @Override
- protected void update(final int m, final double[] vaM, final double[] sqrtM, final double fourM) {
- final double dM = (sqrtM[3] + sqrtM[0]) * (sqrtM[3] + sqrtM[1]) * (sqrtM[3] + sqrtM[2]);
- if (m == 0) {
- sM = dM * 0.5;
- } else {
- // equation A.3 in Carlson[2000]
- final double rM = sM * (FastMath.sqrt(delta / (sM * sM * fourM) + 1.0) + 1.0);
- sM = (dM * rM - delta / (fourM * fourM)) / ((dM + rM / fourM) * 2);
- }
- // equation 2.19 in Carlson[1995]
- final double lambdaA = sqrtM[0] * sqrtM[1];
- final double lambdaB = sqrtM[0] * sqrtM[2];
- final double lambdaC = sqrtM[1] * sqrtM[2];
- // equations 2.19 and 2.20 in Carlson[1995]
- vaM[0] = MathArrays.linearCombination(0.25, vaM[0], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // xₘ
- vaM[1] = MathArrays.linearCombination(0.25, vaM[1], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // yₘ
- vaM[2] = MathArrays.linearCombination(0.25, vaM[2], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // zₘ
- vaM[3] = MathArrays.linearCombination(0.25, vaM[3], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // pₘ
- vaM[4] = MathArrays.linearCombination(0.25, vaM[4], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // aₘ
- }
- /** {@inheritDoc} */
- @Override
- protected double evaluate(final double[] va0, final double aM, final double fourM) {
- // compute symmetric differences
- final double inv = 1.0 / (aM * fourM);
- final double bigX = (va0[4] - va0[0]) * inv;
- final double bigY = (va0[4] - va0[1]) * inv;
- final double bigZ = (va0[4] - va0[2]) * inv;
- final double bigP = (bigX + bigY + bigZ) * -0.5;
- final double bigP2 = bigP * bigP;
- // compute elementary symmetric functions (we already know e1 = 0 by construction)
- final double xyz = bigX * bigY * bigZ;
- final double e2 = bigX * (bigY + bigZ) + bigY * bigZ - bigP * bigP * 3;
- final double e3 = xyz + bigP * 2 * (e2 + bigP2 * 2);
- final double e4 = (xyz * 2 + bigP * (e2 + bigP2 * 3)) * bigP;
- final double e5 = xyz * bigP2;
- final double e2e2 = e2 * e2;
- final double e2e3 = e2 * e3;
- final double e2e4 = e2 * e4;
- final double e2e5 = e2 * e5;
- final double e3e3 = e3 * e3;
- final double e3e4 = e3 * e4;
- final double e2e2e2 = e2e2 * e2;
- final double e2e2e3 = e2e2 * e3;
- // evaluate integral using equation 19.36.1 in DLMF
- // (which add more terms than equation 2.7 in Carlson[1995])
- final double poly = ((e3e4 + e2e5) * RdRealDuplication.E3_E4_P_E2_E5 +
- e2e2e3 * RdRealDuplication.E2_E2_E3 +
- e2e4 * RdRealDuplication.E2_E4 +
- e3e3 * RdRealDuplication.E3_E3 +
- e2e2e2 * RdRealDuplication.E2_E2_E2 +
- e5 * RdRealDuplication.E5 +
- e2e3 * RdRealDuplication.E2_E3 +
- e4 * RdRealDuplication.E4 +
- e2e2 * RdRealDuplication.E2_E2 +
- e3 * RdRealDuplication.E3 +
- e2 * RdRealDuplication.E2 +
- RdRealDuplication.CONSTANT) /
- RdRealDuplication.DENOMINATOR;
- final double polyTerm = poly / (aM * FastMath.sqrt(aM) * fourM);
- // compute a single R_C term
- final double rcTerm = new RcRealDuplication(1.0, delta / (sM * sM * fourM) + 1.0).integral() * 3 / sM;
- return polyTerm + rcTerm;
- }
- }