RfRealDuplication.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.special.elliptic.carlson;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- /** Duplication algorithm for Carlson R<sub>F</sub> elliptic integral.
- * @since 2.0
- */
- class RfRealDuplication extends RealDuplication {
- /** Max number of iterations in the AGM scale. */
- static final int AGM_MAX = 32;
- /** Constant term in R<sub>F</sub> polynomial. */
- static final double CONSTANT = 240240;
- /** Coefficient of E₂ in R<sub>F</sub> polynomial. */
- static final double E2 = -24024;
- /** Coefficient of E₃ in R<sub>F</sub> polynomial. */
- static final double E3 = 17160;
- /** Coefficient of E₂² in R<sub>F</sub> polynomial. */
- static final double E2_E2 = 10010;
- /** Coefficient of E₂E₃ in R<sub>F</sub> polynomial. */
- static final double E2_E3 = -16380;
- /** Coefficient of E₃² in R<sub>F</sub> polynomial. */
- static final double E3_E3 = 6930;
- /** Coefficient of E₂³ in R<sub>F</sub> polynomial. */
- static final double E2_E2_E2 = -5775;
- /** Denominator in R<sub>F</sub> polynomial. */
- static final double DENOMINATOR = 240240;
- /** Simple constructor.
- * @param x first symmetric variable of the integral
- * @param y second symmetric variable of the integral
- * @param z third symmetric variable of the integral
- */
- RfRealDuplication(final double x, final double y, final double z) {
- super(x, y, z);
- }
- /** {@inheritDoc} */
- @Override
- protected void initialMeanPoint(final double[] va) {
- va[3] = (va[0] + va[1] + va[2]) / 3.0;
- }
- /** {@inheritDoc} */
- @Override
- protected double convergenceCriterion(final double r, final double max) {
- return max / FastMath.sqrt(FastMath.sqrt(FastMath.sqrt(r * 3.0)));
- }
- /** {@inheritDoc} */
- @Override
- protected void update(final int m, final double[] vaM, final double[] sqrtM, final double fourM) {
- // equation 2.3 in Carlson[1995]
- final double lambdaA = sqrtM[0] * sqrtM[1];
- final double lambdaB = sqrtM[0] * sqrtM[2];
- final double lambdaC = sqrtM[1] * sqrtM[2];
- // equations 2.3 and 2.4 in Carlson[1995]
- vaM[0] = MathArrays.linearCombination(0.25, vaM[0], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // xₘ
- vaM[1] = MathArrays.linearCombination(0.25, vaM[1], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // yₘ
- vaM[2] = MathArrays.linearCombination(0.25, vaM[2], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // zₘ
- vaM[3] = MathArrays.linearCombination(0.25, vaM[3], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // aₘ
- }
- /** {@inheritDoc} */
- @Override
- protected double evaluate(final double[] va0, final double aM, final double fourM) {
- // compute symmetric differences
- final double inv = 1.0 / (aM * fourM);
- final double bigX = (va0[3] - va0[0]) * inv;
- final double bigY = (va0[3] - va0[1]) * inv;
- final double bigZ = -(bigX + bigY);
- // compute elementary symmetric functions (we already know e1 = 0 by construction)
- final double e2 = bigX * bigY - bigZ * bigZ;
- final double e3 = bigX * bigY * bigZ;
- final double e2e2 = e2 * e2;
- final double e2e3 = e2 * e3;
- final double e3e3 = e3 * e3;
- final double e2e2e2 = e2e2 * e2;
- // evaluate integral using equation 19.36.1 in DLMF
- // (which add more terms than equation 2.7 in Carlson[1995])
- final double poly = (e2e2e2 * E2_E2_E2 +
- e3e3 * E3_E3 +
- e2e3 * E2_E3 +
- e2e2 * E2_E2 +
- e3 * E3 +
- e2 * E2 +
- CONSTANT) /
- DENOMINATOR;
- return poly / FastMath.sqrt(aM);
- }
- /** {@inheritDoc} */
- @Override
- public double integral() {
- final double x = getVi(0);
- final double y = getVi(1);
- final double z = getVi(2);
- if (x == 0) {
- return completeIntegral(y, z);
- } else if (y == 0) {
- return completeIntegral(x, z);
- } else if (z == 0) {
- return completeIntegral(x, y);
- } else {
- return super.integral();
- }
- }
- /** Compute Carlson complete elliptic integral R<sub>F</sub>(u, v, 0).
- * @param x first symmetric variable of the integral
- * @param y second symmetric variable of the integral
- * @return Carlson complete elliptic integral R<sub>F</sub>(u, v, 0)
- */
- private double completeIntegral(final double x, final double y) {
- double xM = FastMath.sqrt(x);
- double yM = FastMath.sqrt(y);
- // iterate down
- for (int i = 1; i < AGM_MAX; ++i) {
- final double xM1 = xM;
- final double yM1 = yM;
- // arithmetic mean
- xM = (xM1 + yM1) * 0.5;
- // geometric mean
- yM = FastMath.sqrt(xM1 * yM1);
- // convergence (by the inequality of arithmetic and geometric means, this is non-negative)
- if (FastMath.abs(xM - yM) <= 4 * FastMath.ulp(xM)) {
- // convergence has been reached
- break;
- }
- }
- return FastMath.PI / (xM + yM);
- }
- }