RfFieldDuplication.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.special.elliptic.carlson;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.complex.Complex;
import org.hipparchus.complex.FieldComplex;
import org.hipparchus.util.FastMath;
/** Duplication algorithm for Carlson R<sub>F</sub> elliptic integral.
* @param <T> type of the field elements (really {@link Complex} or {@link FieldComplex})
* @since 2.0
*/
class RfFieldDuplication<T extends CalculusFieldElement<T>> extends FieldDuplication<T> {
/** Simple constructor.
* @param x first symmetric variable of the integral
* @param y second symmetric variable of the integral
* @param z third symmetric variable of the integral
*/
RfFieldDuplication(final T x, final T y, final T z) {
super(x, y, z);
}
/** {@inheritDoc} */
@Override
protected void initialMeanPoint(final T[] va) {
va[3] = va[0].add(va[1]).add(va[2]).divide(3.0);
}
/** {@inheritDoc} */
@Override
protected T convergenceCriterion(final T r, final T max) {
return max.divide(FastMath.sqrt(FastMath.sqrt(FastMath.sqrt(r.multiply(3.0)))));
}
/** {@inheritDoc} */
@Override
protected void update(final int m, final T[] vaM, final T[] sqrtM, final double fourM) {
// equation 2.3 in Carlson[1995]
final T lambdaA = sqrtM[0].multiply(sqrtM[1]);
final T lambdaB = sqrtM[0].multiply(sqrtM[2]);
final T lambdaC = sqrtM[1].multiply(sqrtM[2]);
// equations 2.3 and 2.4 in Carlson[1995]
vaM[0] = vaM[0].linearCombination(0.25, vaM[0], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // xₘ
vaM[1] = vaM[1].linearCombination(0.25, vaM[1], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // yₘ
vaM[2] = vaM[2].linearCombination(0.25, vaM[2], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // zₘ
vaM[3] = vaM[3].linearCombination(0.25, vaM[3], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // aₘ
}
/** {@inheritDoc} */
@Override
protected T evaluate(final T[] va0, final T aM, final double fourM) {
// compute symmetric differences
final T inv = aM.multiply(fourM).reciprocal();
final T bigX = va0[3].subtract(va0[0]).multiply(inv);
final T bigY = va0[3].subtract(va0[1]).multiply(inv);
final T bigZ = bigX.add(bigY).negate();
// compute elementary symmetric functions (we already know e1 = 0 by construction)
final T e2 = bigX.multiply(bigY).subtract(bigZ.multiply(bigZ));
final T e3 = bigX.multiply(bigY).multiply(bigZ);
final T e2e2 = e2.multiply(e2);
final T e2e3 = e2.multiply(e3);
final T e3e3 = e3.multiply(e3);
final T e2e2e2 = e2e2.multiply(e2);
// evaluate integral using equation 19.36.1 in DLMF
// (which add more terms than equation 2.7 in Carlson[1995])
final T poly = e2e2e2.multiply(RfRealDuplication.E2_E2_E2).
add(e3e3.multiply(RfRealDuplication.E3_E3)).
add(e2e3.multiply(RfRealDuplication.E2_E3)).
add(e2e2.multiply(RfRealDuplication.E2_E2)).
add(e3.multiply(RfRealDuplication.E3)).
add(e2.multiply(RfRealDuplication.E2)).
add(RfRealDuplication.CONSTANT).
divide(RfRealDuplication.DENOMINATOR);
return poly.divide(FastMath.sqrt(aM));
}
/** {@inheritDoc} */
@Override
public T integral() {
final T x = getVi(0);
final T y = getVi(1);
final T z = getVi(2);
if (x.isZero()) {
return completeIntegral(y, z);
} else if (y.isZero()) {
return completeIntegral(x, z);
} else if (z.isZero()) {
return completeIntegral(x, y);
} else {
return super.integral();
}
}
/** Compute Carlson complete elliptic integral R<sub>F</sub>(u, v, 0).
* @param x first symmetric variable of the integral
* @param y second symmetric variable of the integral
* @return Carlson complete elliptic integral R<sub>F</sub>(u, v, 0)
*/
private T completeIntegral(final T x, final T y) {
T xM = x.sqrt();
T yM = y.sqrt();
// iterate down
for (int i = 1; i < RfRealDuplication.AGM_MAX; ++i) {
final T xM1 = xM;
final T yM1 = yM;
// arithmetic mean
xM = xM1.add(yM1).multiply(0.5);
// geometric mean
yM = xM1.multiply(yM1).sqrt();
// convergence (by the inequality of arithmetic and geometric means, this is non-negative)
if (xM.subtract(yM).norm() <= 4 * FastMath.ulp(xM).getReal()) {
// convergence has been reached
break;
}
}
return xM.add(yM).reciprocal().multiply(xM.getPi());
}
}