RfFieldDuplication.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.special.elliptic.carlson;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.complex.Complex;
- import org.hipparchus.complex.FieldComplex;
- import org.hipparchus.util.FastMath;
- /** Duplication algorithm for Carlson R<sub>F</sub> elliptic integral.
- * @param <T> type of the field elements (really {@link Complex} or {@link FieldComplex})
- * @since 2.0
- */
- class RfFieldDuplication<T extends CalculusFieldElement<T>> extends FieldDuplication<T> {
- /** Simple constructor.
- * @param x first symmetric variable of the integral
- * @param y second symmetric variable of the integral
- * @param z third symmetric variable of the integral
- */
- RfFieldDuplication(final T x, final T y, final T z) {
- super(x, y, z);
- }
- /** {@inheritDoc} */
- @Override
- protected void initialMeanPoint(final T[] va) {
- va[3] = va[0].add(va[1]).add(va[2]).divide(3.0);
- }
- /** {@inheritDoc} */
- @Override
- protected T convergenceCriterion(final T r, final T max) {
- return max.divide(FastMath.sqrt(FastMath.sqrt(FastMath.sqrt(r.multiply(3.0)))));
- }
- /** {@inheritDoc} */
- @Override
- protected void update(final int m, final T[] vaM, final T[] sqrtM, final double fourM) {
- // equation 2.3 in Carlson[1995]
- final T lambdaA = sqrtM[0].multiply(sqrtM[1]);
- final T lambdaB = sqrtM[0].multiply(sqrtM[2]);
- final T lambdaC = sqrtM[1].multiply(sqrtM[2]);
- // equations 2.3 and 2.4 in Carlson[1995]
- vaM[0] = vaM[0].linearCombination(0.25, vaM[0], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // xₘ
- vaM[1] = vaM[1].linearCombination(0.25, vaM[1], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // yₘ
- vaM[2] = vaM[2].linearCombination(0.25, vaM[2], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // zₘ
- vaM[3] = vaM[3].linearCombination(0.25, vaM[3], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // aₘ
- }
- /** {@inheritDoc} */
- @Override
- protected T evaluate(final T[] va0, final T aM, final double fourM) {
- // compute symmetric differences
- final T inv = aM.multiply(fourM).reciprocal();
- final T bigX = va0[3].subtract(va0[0]).multiply(inv);
- final T bigY = va0[3].subtract(va0[1]).multiply(inv);
- final T bigZ = bigX.add(bigY).negate();
- // compute elementary symmetric functions (we already know e1 = 0 by construction)
- final T e2 = bigX.multiply(bigY).subtract(bigZ.multiply(bigZ));
- final T e3 = bigX.multiply(bigY).multiply(bigZ);
- final T e2e2 = e2.multiply(e2);
- final T e2e3 = e2.multiply(e3);
- final T e3e3 = e3.multiply(e3);
- final T e2e2e2 = e2e2.multiply(e2);
- // evaluate integral using equation 19.36.1 in DLMF
- // (which add more terms than equation 2.7 in Carlson[1995])
- final T poly = e2e2e2.multiply(RfRealDuplication.E2_E2_E2).
- add(e3e3.multiply(RfRealDuplication.E3_E3)).
- add(e2e3.multiply(RfRealDuplication.E2_E3)).
- add(e2e2.multiply(RfRealDuplication.E2_E2)).
- add(e3.multiply(RfRealDuplication.E3)).
- add(e2.multiply(RfRealDuplication.E2)).
- add(RfRealDuplication.CONSTANT).
- divide(RfRealDuplication.DENOMINATOR);
- return poly.divide(FastMath.sqrt(aM));
- }
- /** {@inheritDoc} */
- @Override
- public T integral() {
- final T x = getVi(0);
- final T y = getVi(1);
- final T z = getVi(2);
- if (x.isZero()) {
- return completeIntegral(y, z);
- } else if (y.isZero()) {
- return completeIntegral(x, z);
- } else if (z.isZero()) {
- return completeIntegral(x, y);
- } else {
- return super.integral();
- }
- }
- /** Compute Carlson complete elliptic integral R<sub>F</sub>(u, v, 0).
- * @param x first symmetric variable of the integral
- * @param y second symmetric variable of the integral
- * @return Carlson complete elliptic integral R<sub>F</sub>(u, v, 0)
- */
- private T completeIntegral(final T x, final T y) {
- T xM = x.sqrt();
- T yM = y.sqrt();
- // iterate down
- for (int i = 1; i < RfRealDuplication.AGM_MAX; ++i) {
- final T xM1 = xM;
- final T yM1 = yM;
- // arithmetic mean
- xM = xM1.add(yM1).multiply(0.5);
- // geometric mean
- yM = xM1.multiply(yM1).sqrt();
- // convergence (by the inequality of arithmetic and geometric means, this is non-negative)
- if (xM.subtract(yM).norm() <= 4 * FastMath.ulp(xM).getReal()) {
- // convergence has been reached
- break;
- }
- }
- return xM.add(yM).reciprocal().multiply(xM.getPi());
- }
- }