RcFieldDuplication.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.special.elliptic.carlson;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.complex.Complex;
- import org.hipparchus.complex.FieldComplex;
- import org.hipparchus.util.FastMath;
- /** Duplication algorithm for Carlson R<sub>C</sub> elliptic integral.
- * @param <T> type of the field elements (really {@link Complex} or {@link FieldComplex})
- * @since 2.0
- */
- class RcFieldDuplication<T extends CalculusFieldElement<T>> extends FieldDuplication<T> {
- /** Simple constructor.
- * @param x first symmetric variable of the integral
- * @param y second symmetric variable of the integral
- */
- RcFieldDuplication(final T x, final T y) {
- super(x, y);
- }
- /** {@inheritDoc} */
- @Override
- protected void initialMeanPoint(final T[] va) {
- va[2] = va[0].add(va[1].multiply(2)).divide(3.0);
- }
- /** {@inheritDoc} */
- @Override
- protected T convergenceCriterion(final T r, final T max) {
- return max.divide(FastMath.sqrt(FastMath.sqrt(FastMath.sqrt(r.multiply(3.0)))));
- }
- /** {@inheritDoc} */
- @Override
- protected void update(final int m, final T[] vaM, final T[] sqrtM, final double fourM) {
- final T lambdaA = sqrtM[0].multiply(sqrtM[1]).multiply(2);
- final T lambdaB = vaM[1];
- vaM[0] = vaM[0].linearCombination(0.25, vaM[0], 0.25, lambdaA, 0.25, lambdaB); // xₘ
- vaM[1] = vaM[1].linearCombination(0.25, vaM[1], 0.25, lambdaA, 0.25, lambdaB); // yₘ
- vaM[2] = vaM[2].linearCombination(0.25, vaM[2], 0.25, lambdaA, 0.25, lambdaB); // aₘ
- }
- /** {@inheritDoc} */
- @Override
- protected T evaluate(final T[] va0, final T aM, final double fourM) {
- // compute the single polynomial independent variable
- final T s = va0[1].subtract(va0[2]).divide(aM.multiply(fourM));
- // evaluate integral using equation 2.13 in Carlson[1995]
- final T poly = s.multiply(RcRealDuplication.S7).
- add(RcRealDuplication.S6).multiply(s).
- add(RcRealDuplication.S5).multiply(s).
- add(RcRealDuplication.S4).multiply(s).
- add(RcRealDuplication.S3).multiply(s).
- add(RcRealDuplication.S2).multiply(s).
- multiply(s).
- add(RcRealDuplication.S0).
- divide(RcRealDuplication.DENOMINATOR);
- return poly.divide(FastMath.sqrt(aM));
- }
- }