HaltonSequenceGenerator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.random;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.util.MathUtils;
- /**
- * Implementation of a Halton sequence.
- * <p>
- * A Halton sequence is a low-discrepancy sequence generating points in the interval [0, 1] according to
- * <pre>
- * H(n) = d_0 / b + d_1 / b^2 .... d_j / b^j+1
- *
- * with
- *
- * n = d_j * b^j-1 + ... d_1 * b + d_0 * b^0
- * </pre>
- * For higher dimensions, subsequent prime numbers are used as base, e.g. { 2, 3, 5 } for a Halton sequence in R^3.
- * <p>
- * Halton sequences are known to suffer from linear correlation for larger prime numbers, thus the individual digits
- * are usually scrambled. This implementation already comes with support for up to 40 dimensions with optimal weight
- * numbers from <a href="http://etd.lib.fsu.edu/theses/available/etd-07062004-140409/unrestricted/dissertation1.pdf">
- * H. Chi: Scrambled quasirandom sequences and their applications</a>.
- * <p>
- * The generator supports two modes:
- * <ul>
- * <li>sequential generation of points: {@link #nextVector()}</li>
- * <li>random access to the i-th point in the sequence: {@link #skipTo(int)}</li>
- * </ul>
- *
- * @see <a href="http://en.wikipedia.org/wiki/Halton_sequence">Halton sequence (Wikipedia)</a>
- * @see <a href="https://lirias.kuleuven.be/bitstream/123456789/131168/1/mcm2005_bartv.pdf">
- * On the Halton sequence and its scramblings</a>
- */
- public class HaltonSequenceGenerator implements RandomVectorGenerator {
- /** The first 40 primes. */
- private static final int[] PRIMES = {
- 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
- 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
- 149, 151, 157, 163, 167, 173
- };
- /** The optimal weights used for scrambling of the first 40 dimension. */
- private static final int[] WEIGHTS = {
- 1, 2, 3, 3, 8, 11, 12, 14, 7, 18, 12, 13, 17, 18, 29, 14, 18, 43, 41,
- 44, 40, 30, 47, 65, 71, 28, 40, 60, 79, 89, 56, 50, 52, 61, 108, 56,
- 66, 63, 60, 66
- };
- /** Space dimension. */
- private final int dimension;
- /** The current index in the sequence. */
- private int count;
- /** The base numbers for each component. */
- private final int[] base;
- /** The scrambling weights for each component. */
- private final int[] weight;
- /**
- * Construct a new Halton sequence generator for the given space dimension.
- *
- * @param dimension the space dimension
- * @throws MathIllegalArgumentException if the space dimension is outside the allowed range of [1, 40]
- */
- public HaltonSequenceGenerator(final int dimension) throws MathIllegalArgumentException {
- this(dimension, PRIMES, WEIGHTS);
- }
- /**
- * Construct a new Halton sequence generator with the given base numbers and weights for each dimension.
- * The length of the bases array defines the space dimension and is required to be > 0.
- *
- * @param dimension the space dimension
- * @param bases the base number for each dimension, entries should be (pairwise) prime, may not be null
- * @param weights the weights used during scrambling, may be null in which case no scrambling will be performed
- * @throws NullArgumentException if base is null
- * @throws MathIllegalArgumentException if the space dimension is outside the range [1, len], where
- * len refers to the length of the bases array
- * @throws MathIllegalArgumentException if weights is non-null and the length of the input arrays differ
- */
- public HaltonSequenceGenerator(final int dimension, final int[] bases, final int[] weights)
- throws MathIllegalArgumentException, NullArgumentException {
- MathUtils.checkNotNull(bases);
- MathUtils.checkRangeInclusive(dimension, 1, bases.length);
- if (weights != null && weights.length != bases.length) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- weights.length, bases.length);
- }
- this.dimension = dimension;
- this.base = bases.clone();
- this.weight = weights == null ? null : weights.clone();
- count = 0;
- }
- /** {@inheritDoc} */
- @Override
- public double[] nextVector() {
- final double[] v = new double[dimension];
- for (int i = 0; i < dimension; i++) {
- int index = count;
- double f = 1.0 / base[i];
- int j = 0;
- while (index > 0) {
- final int digit = scramble(i, j, base[i], index % base[i]);
- v[i] += f * digit;
- index /= base[i]; // floor( index / base )
- f /= base[i];
- }
- }
- count++;
- return v;
- }
- /**
- * Performs scrambling of digit {@code d_j} according to the formula:
- * <pre>
- * ( weight_i * d_j ) mod base
- * </pre>
- * Implementations can override this method to do a different scrambling.
- *
- * @param i the dimension index
- * @param j the digit index
- * @param b the base for this dimension
- * @param digit the j-th digit
- * @return the scrambled digit
- */
- protected int scramble(final int i, final int j, final int b, final int digit) {
- return weight != null ? (weight[i] * digit) % b : digit;
- }
- /**
- * Skip to the i-th point in the Halton sequence.
- * <p>
- * This operation can be performed in O(1).
- *
- * @param index the index in the sequence to skip to
- * @return the i-th point in the Halton sequence
- * @throws MathIllegalArgumentException if index < 0
- */
- public double[] skipTo(final int index) throws MathIllegalArgumentException {
- count = index;
- return nextVector();
- }
- /**
- * Returns the index i of the next point in the Halton sequence that will be returned
- * by calling {@link #nextVector()}.
- *
- * @return the index of the next point
- */
- public int getNextIndex() {
- return count;
- }
- }