GaussMarkovGenerator.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.random;
- import org.hipparchus.util.FastMath;
- /** This class is a Gauss-Markov order 1 autoregressive process generator for scalars.
- * @since 3.1
- */
- public class GaussMarkovGenerator {
- /** Correlation time. */
- private final double tau;
- /** Standard deviation of the stationary process. */
- private final double stationarySigma;
- /** Underlying generator. */
- private final RandomGenerator generator;
- /** Last generated value. */
- private double last;
- /** Create a new generator.
- * @param tau correlation time
- * @param stationarySigma standard deviation of the stationary process
- * @param generator underlying random generator to use
- */
- public GaussMarkovGenerator(final double tau, final double stationarySigma,
- final RandomGenerator generator) {
- this.tau = tau;
- this.stationarySigma = stationarySigma;
- this.generator = generator;
- this.last = Double.NaN;
- }
- /** Get the correlation time.
- * @return correlation time
- */
- public double getTau() {
- return tau;
- }
- /** Get the standard deviation of the stationary process.
- * @return standard deviation of the stationary process
- */
- public double getStationarySigma() {
- return stationarySigma;
- }
- /** Generate next step in the autoregressive process.
- * @param deltaT time step since previous estimate (unused at first call)
- * @return a random scalar obeying autoregressive model
- */
- public double next(final double deltaT) {
- if (Double.isNaN(last)) {
- // first generation: use the stationary process
- last = stationarySigma * generator.nextGaussian();
- } else {
- // regular generation: use the autoregressive process
- final double phi = FastMath.exp(-deltaT / tau);
- final double sigmaE = FastMath.sqrt(1 - phi * phi) * stationarySigma;
- last = phi * last + sigmaE * generator.nextGaussian();
- }
- return last;
- }
- }