AbstractWell.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.random;
- import java.io.Serializable;
- import org.hipparchus.util.FastMath;
- /**
- * This abstract class implements the WELL class of pseudo-random number generator
- * from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto.
- * <p>
- * This generator is described in a paper by François Panneton,
- * Pierre L'Ecuyer and Makoto Matsumoto
- * <a href="http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf">
- * Improved Long-Period Generators Based on Linear Recurrences Modulo 2</a>
- * ACM Transactions on Mathematical Software, 32, 1 (2006). The errata for the paper
- * are in <a href="http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng-errata.txt">
- * wellrng-errata.txt</a>.
- *
- * @see <a href="http://www.iro.umontreal.ca/~panneton/WELLRNG.html">WELL Random number generator</a>
- */
- public abstract class AbstractWell extends IntRandomGenerator implements Serializable {
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20150223L;
- /** Current index in the bytes pool. */
- protected int index;
- /** Bytes pool. */
- protected final int[] v;
- /** Creates a new random number generator.
- * <p>The instance is initialized using the current time plus the
- * system identity hash code of this instance as the seed.</p>
- * @param k number of bits in the pool (not necessarily a multiple of 32)
- */
- protected AbstractWell(final int k) {
- this(k, null);
- }
- /** Creates a new random number generator using a single int seed.
- * @param k number of bits in the pool (not necessarily a multiple of 32)
- * @param seed the initial seed (32 bits integer)
- */
- protected AbstractWell(final int k, final int seed) {
- this(k, new int[] { seed });
- }
- /**
- * Creates a new random number generator using an int array seed.
- * @param k number of bits in the pool (not necessarily a multiple of 32)
- * @param seed the initial seed (32 bits integers array), if null
- * the seed of the generator will be related to the current time
- */
- protected AbstractWell(final int k, final int[] seed) {
- final int r = calculateBlockCount(k);
- this.v = new int[r];
- this.index = 0;
- // initialize the pool content
- setSeed(seed);
- }
- /**
- * Creates a new random number generator using a single long seed.
- * @param k number of bits in the pool (not necessarily a multiple of 32)
- * @param seed the initial seed (64 bits integer)
- */
- protected AbstractWell(final int k, final long seed) {
- this(k, new int[] { (int) (seed >>> 32), (int) (seed & 0xffffffffl) });
- }
- /**
- * Reinitialize the generator as if just built with the given int array seed.
- * <p>
- * The state of the generator is exactly the same as a new
- * generator built with the same seed.
- *
- * @param seed the initial seed (32 bits integers array). If null
- * the seed of the generator will be the system time plus the system identity
- * hash code of the instance.
- */
- @Override
- public void setSeed(final int[] seed) {
- if (seed == null) {
- setSeed(System.currentTimeMillis() + System.identityHashCode(this));
- return;
- }
- System.arraycopy(seed, 0, v, 0, FastMath.min(seed.length, v.length));
- if (seed.length < v.length) {
- for (int i = seed.length; i < v.length; ++i) {
- final long l = v[i - seed.length];
- v[i] = (int) ((1812433253l * (l ^ (l >> 30)) + i) & 0xffffffffL);
- }
- }
- index = 0;
- clearCache(); // Clear normal deviate cache
- }
- /**
- * Calculate the number of 32-bits blocks.
- * @param k number of bits in the pool (not necessarily a multiple of 32)
- * @return the number of 32-bits blocks
- */
- private static int calculateBlockCount(final int k) {
- // the bits pool contains k bits, k = r w - p where r is the number
- // of w bits blocks, w is the block size (always 32 in the original paper)
- // and p is the number of unused bits in the last block
- final int w = 32;
- return (k + w - 1) / w;
- }
- /**
- * Inner class used to store the indirection index table which is fixed
- * for a given type of WELL class of pseudo-random number generator.
- */
- protected static final class IndexTable {
- /**
- * Index indirection table giving for each index its predecessor
- * taking table size into account.
- */
- private final int[] iRm1;
- /**
- * Index indirection table giving for each index its second predecessor
- * taking table size into account.
- */
- private final int[] iRm2;
- /**
- * Index indirection table giving for each index the value index + m1
- * taking table size into account.
- */
- private final int[] i1;
- /**
- * Index indirection table giving for each index the value index + m2
- * taking table size into account.
- */
- private final int[] i2;
- /**
- * Index indirection table giving for each index the value index + m3
- * taking table size into account.
- */
- private final int[] i3;
- /**
- * Creates a new pre-calculated indirection index table.
- * @param k number of bits in the pool (not necessarily a multiple of 32)
- * @param m1 first parameter of the algorithm
- * @param m2 second parameter of the algorithm
- * @param m3 third parameter of the algorithm
- */
- public IndexTable(final int k, final int m1, final int m2, final int m3) {
- final int r = calculateBlockCount(k);
- // precompute indirection index tables. These tables are used for optimizing access
- // they allow saving computations like "(j + r - 2) % r" with costly modulo operations
- iRm1 = new int[r];
- iRm2 = new int[r];
- i1 = new int[r];
- i2 = new int[r];
- i3 = new int[r];
- for (int j = 0; j < r; ++j) {
- iRm1[j] = (j + r - 1) % r;
- iRm2[j] = (j + r - 2) % r;
- i1[j] = (j + m1) % r;
- i2[j] = (j + m2) % r;
- i3[j] = (j + m3) % r;
- }
- }
- /**
- * Returns the predecessor of the given index modulo the table size.
- * @param index the index to look at
- * @return (index - 1) % table size
- */
- public int getIndexPred(final int index) {
- return iRm1[index];
- }
- /**
- * Returns the second predecessor of the given index modulo the table size.
- * @param index the index to look at
- * @return (index - 2) % table size
- */
- public int getIndexPred2(final int index) {
- return iRm2[index];
- }
- /**
- * Returns index + M1 modulo the table size.
- * @param index the index to look at
- * @return (index + M1) % table size
- */
- public int getIndexM1(final int index) {
- return i1[index];
- }
- /**
- * Returns index + M2 modulo the table size.
- * @param index the index to look at
- * @return (index + M2) % table size
- */
- public int getIndexM2(final int index) {
- return i2[index];
- }
- /**
- * Returns index + M3 modulo the table size.
- * @param index the index to look at
- * @return (index + M3) % table size
- */
- public int getIndexM3(final int index) {
- return i3[index];
- }
- }
- }