TriDiagonalTransformer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.linear;
- import java.util.Arrays;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- /**
- * Class transforming a symmetrical matrix to tridiagonal shape.
- * <p>A symmetrical m × m matrix A can be written as the product of three matrices:
- * A = Q × T × Q<sup>T</sup> with Q an orthogonal matrix and T a symmetrical
- * tridiagonal matrix. Both Q and T are m × m matrices.</p>
- * <p>This implementation only uses the upper part of the matrix, the part below the
- * diagonal is not accessed at all.</p>
- * <p>Transformation to tridiagonal shape is often not a goal by itself, but it is
- * an intermediate step in more general decomposition algorithms like {@link
- * EigenDecompositionSymmetric eigen decomposition}. This class is therefore intended for internal
- * use by the library and is not public. As a consequence of this explicitly limited scope,
- * many methods directly returns references to internal arrays, not copies.</p>
- */
- class TriDiagonalTransformer {
- /** Householder vectors. */
- private final double[][] householderVectors;
- /** Main diagonal. */
- private final double[] main;
- /** Secondary diagonal. */
- private final double[] secondary;
- /** Cached value of Q. */
- private RealMatrix cachedQ;
- /** Cached value of Qt. */
- private RealMatrix cachedQt;
- /** Cached value of T. */
- private RealMatrix cachedT;
- /**
- * Build the transformation to tridiagonal shape of a symmetrical matrix.
- * <p>The specified matrix is assumed to be symmetrical without any check.
- * Only the upper triangular part of the matrix is used.</p>
- *
- * @param matrix Symmetrical matrix to transform.
- * @throws MathIllegalArgumentException if the matrix is not square.
- */
- TriDiagonalTransformer(RealMatrix matrix) {
- if (!matrix.isSquare()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NON_SQUARE_MATRIX,
- matrix.getRowDimension(), matrix.getColumnDimension());
- }
- final int m = matrix.getRowDimension();
- householderVectors = matrix.getData();
- main = new double[m];
- secondary = new double[m - 1];
- cachedQ = null;
- cachedQt = null;
- cachedT = null;
- // transform matrix
- transform();
- }
- /**
- * Returns the matrix Q of the transform.
- * <p>Q is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
- * @return the Q matrix
- */
- public RealMatrix getQ() {
- if (cachedQ == null) {
- cachedQ = getQT().transpose();
- }
- return cachedQ;
- }
- /**
- * Returns the transpose of the matrix Q of the transform.
- * <p>Q is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
- * @return the Q matrix
- */
- public RealMatrix getQT() {
- if (cachedQt == null) {
- final int m = householderVectors.length;
- double[][] qta = new double[m][m];
- // build up first part of the matrix by applying Householder transforms
- for (int k = m - 1; k >= 1; --k) {
- final double[] hK = householderVectors[k - 1];
- qta[k][k] = 1;
- if (hK[k] != 0.0) {
- final double inv = 1.0 / (secondary[k - 1] * hK[k]);
- double beta = 1.0 / secondary[k - 1];
- qta[k][k] = 1 + beta * hK[k];
- for (int i = k + 1; i < m; ++i) {
- qta[k][i] = beta * hK[i];
- }
- for (int j = k + 1; j < m; ++j) {
- beta = 0;
- for (int i = k + 1; i < m; ++i) {
- beta += qta[j][i] * hK[i];
- }
- beta *= inv;
- qta[j][k] = beta * hK[k];
- for (int i = k + 1; i < m; ++i) {
- qta[j][i] += beta * hK[i];
- }
- }
- }
- }
- qta[0][0] = 1;
- cachedQt = MatrixUtils.createRealMatrix(qta);
- }
- // return the cached matrix
- return cachedQt;
- }
- /**
- * Returns the tridiagonal matrix T of the transform.
- * @return the T matrix
- */
- public RealMatrix getT() {
- if (cachedT == null) {
- final int m = main.length;
- double[][] ta = new double[m][m];
- for (int i = 0; i < m; ++i) {
- ta[i][i] = main[i];
- if (i > 0) {
- ta[i][i - 1] = secondary[i - 1];
- }
- if (i < main.length - 1) {
- ta[i][i + 1] = secondary[i];
- }
- }
- cachedT = MatrixUtils.createRealMatrix(ta);
- }
- // return the cached matrix
- return cachedT;
- }
- /**
- * Get the Householder vectors of the transform.
- * <p>Note that since this class is only intended for internal use,
- * it returns directly a reference to its internal arrays, not a copy.</p>
- * @return the main diagonal elements of the B matrix
- */
- double[][] getHouseholderVectorsRef() {
- return householderVectors; // NOPMD - returning an internal array is intentional and documented here
- }
- /**
- * Get the main diagonal elements of the matrix T of the transform.
- * <p>Note that since this class is only intended for internal use,
- * it returns directly a reference to its internal arrays, not a copy.</p>
- * @return the main diagonal elements of the T matrix
- */
- double[] getMainDiagonalRef() {
- return main; // NOPMD - returning an internal array is intentional and documented here
- }
- /**
- * Get the secondary diagonal elements of the matrix T of the transform.
- * <p>Note that since this class is only intended for internal use,
- * it returns directly a reference to its internal arrays, not a copy.</p>
- * @return the secondary diagonal elements of the T matrix
- */
- double[] getSecondaryDiagonalRef() {
- return secondary; // NOPMD - returning an internal array is intentional and documented here
- }
- /**
- * Transform original matrix to tridiagonal form.
- * <p>Transformation is done using Householder transforms.</p>
- */
- private void transform() {
- final int m = householderVectors.length;
- final double[] z = new double[m];
- for (int k = 0; k < m - 1; k++) {
- //zero-out a row and a column simultaneously
- final double[] hK = householderVectors[k];
- main[k] = hK[k];
- double xNormSqr = 0;
- for (int j = k + 1; j < m; ++j) {
- final double c = hK[j];
- xNormSqr += c * c;
- }
- final double a = (hK[k + 1] > 0) ? -FastMath.sqrt(xNormSqr) : FastMath.sqrt(xNormSqr);
- secondary[k] = a;
- if (a != 0.0) {
- // apply Householder transform from left and right simultaneously
- hK[k + 1] -= a;
- final double beta = -1 / (a * hK[k + 1]);
- // compute a = beta A v, where v is the Householder vector
- // this loop is written in such a way
- // 1) only the upper triangular part of the matrix is accessed
- // 2) access is cache-friendly for a matrix stored in rows
- Arrays.fill(z, k + 1, m, 0);
- for (int i = k + 1; i < m; ++i) {
- final double[] hI = householderVectors[i];
- final double hKI = hK[i];
- double zI = hI[i] * hKI;
- for (int j = i + 1; j < m; ++j) {
- final double hIJ = hI[j];
- zI += hIJ * hK[j];
- z[j] += hIJ * hKI;
- }
- z[i] = beta * (z[i] + zI);
- }
- // compute gamma = beta vT z / 2
- double gamma = 0;
- for (int i = k + 1; i < m; ++i) {
- gamma += z[i] * hK[i];
- }
- gamma *= beta / 2;
- // compute z = z - gamma v
- for (int i = k + 1; i < m; ++i) {
- z[i] -= gamma * hK[i];
- }
- // update matrix: A = A - v zT - z vT
- // only the upper triangular part of the matrix is updated
- for (int i = k + 1; i < m; ++i) {
- final double[] hI = householderVectors[i];
- for (int j = i; j < m; ++j) {
- hI[j] -= hK[i] * z[j] + z[i] * hK[j];
- }
- }
- }
- }
- main[m - 1] = householderVectors[m - 1][m - 1];
- }
- }