SchurTransformer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.linear;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.Precision;
- /**
- * Class transforming a general real matrix to Schur form.
- * <p>A m × m matrix A can be written as the product of three matrices: A = P
- * × T × P<sup>T</sup> with P an orthogonal matrix and T an quasi-triangular
- * matrix. Both P and T are m × m matrices.</p>
- * <p>Transformation to Schur form is often not a goal by itself, but it is an
- * intermediate step in more general decomposition algorithms like
- * {@link EigenDecompositionSymmetric eigen decomposition}. This class is therefore
- * intended for expert use. As a consequence of this explicitly limited scope,
- * many methods directly returns references to internal arrays, not copies.</p>
- * <p>This class is based on the method hqr2 in class EigenvalueDecomposition
- * from the <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library.</p>
- *
- * @see <a href="http://mathworld.wolfram.com/SchurDecomposition.html">Schur Decomposition - MathWorld</a>
- * @see <a href="http://en.wikipedia.org/wiki/Schur_decomposition">Schur Decomposition - Wikipedia</a>
- * @see <a href="http://en.wikipedia.org/wiki/Householder_transformation">Householder Transformations</a>
- */
- public class SchurTransformer {
- /** Maximum allowed iterations for convergence of the transformation. */
- private static final int MAX_ITERATIONS = 100;
- /** P matrix. */
- private final double[][] matrixP;
- /** T matrix. */
- private final double[][] matrixT;
- /** Cached value of P. */
- private RealMatrix cachedP;
- /** Cached value of T. */
- private RealMatrix cachedT;
- /** Cached value of PT. */
- private RealMatrix cachedPt;
- /** Epsilon criteria. */
- private final double epsilon;
- /**
- * Build the transformation to Schur form of a general real matrix.
- *
- * @param matrix matrix to transform
- * @throws MathIllegalArgumentException if the matrix is not square
- */
- public SchurTransformer(final RealMatrix matrix) {
- /** Epsilon criteria taken from JAMA code (originally was 2^-52). */
- this(matrix, Precision.EPSILON);
- }
- /**
- * Build the transformation to Schur form of a general real matrix.
- *
- * @param matrix matrix to transform
- * @param epsilon convergence criteria
- * @throws MathIllegalArgumentException if the matrix is not square
- * @since 3.0
- */
- public SchurTransformer(final RealMatrix matrix, final double epsilon) {
- if (!matrix.isSquare()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NON_SQUARE_MATRIX,
- matrix.getRowDimension(), matrix.getColumnDimension());
- }
- this.epsilon = epsilon;
- HessenbergTransformer transformer = new HessenbergTransformer(matrix);
- matrixT = transformer.getH().getData();
- matrixP = transformer.getP().getData();
- cachedT = null;
- cachedP = null;
- cachedPt = null;
- // transform matrix
- transform();
- }
- /**
- * Returns the matrix P of the transform.
- * <p>P is an orthogonal matrix, i.e. its inverse is also its transpose.</p>
- *
- * @return the P matrix
- */
- public RealMatrix getP() {
- if (cachedP == null) {
- cachedP = MatrixUtils.createRealMatrix(matrixP);
- }
- return cachedP;
- }
- /**
- * Returns the transpose of the matrix P of the transform.
- * <p>P is an orthogonal matrix, i.e. its inverse is also its transpose.</p>
- *
- * @return the transpose of the P matrix
- */
- public RealMatrix getPT() {
- if (cachedPt == null) {
- cachedPt = getP().transpose();
- }
- // return the cached matrix
- return cachedPt;
- }
- /**
- * Returns the quasi-triangular Schur matrix T of the transform.
- *
- * @return the T matrix
- */
- public RealMatrix getT() {
- if (cachedT == null) {
- cachedT = MatrixUtils.createRealMatrix(matrixT);
- }
- // return the cached matrix
- return cachedT;
- }
- /**
- * Transform original matrix to Schur form.
- * @throws MathIllegalStateException if the transformation does not converge
- */
- private void transform() {
- final int n = matrixT.length;
- // compute matrix norm
- final double norm = getNorm();
- // shift information
- final ShiftInfo shift = new ShiftInfo();
- // Outer loop over eigenvalue index
- int iteration = 0;
- int iu = n - 1;
- while (iu >= 0) {
- // Look for single small sub-diagonal element
- final int il = findSmallSubDiagonalElement(iu, norm);
- // Check for convergence
- if (il == iu) {
- // One root found
- matrixT[iu][iu] += shift.exShift;
- iu--;
- iteration = 0;
- } else if (il == iu - 1) {
- // Two roots found
- double p = (matrixT[iu - 1][iu - 1] - matrixT[iu][iu]) / 2.0;
- double q = p * p + matrixT[iu][iu - 1] * matrixT[iu - 1][iu];
- matrixT[iu][iu] += shift.exShift;
- matrixT[iu - 1][iu - 1] += shift.exShift;
- if (q >= 0) {
- double z = FastMath.sqrt(FastMath.abs(q));
- if (p >= 0) {
- z = p + z;
- } else {
- z = p - z;
- }
- final double x = matrixT[iu][iu - 1];
- final double s = FastMath.abs(x) + FastMath.abs(z);
- p = x / s;
- q = z / s;
- final double r = FastMath.sqrt(p * p + q * q);
- p /= r;
- q /= r;
- // Row modification
- for (int j = iu - 1; j < n; j++) {
- z = matrixT[iu - 1][j];
- matrixT[iu - 1][j] = q * z + p * matrixT[iu][j];
- matrixT[iu][j] = q * matrixT[iu][j] - p * z;
- }
- // Column modification
- for (int i = 0; i <= iu; i++) {
- z = matrixT[i][iu - 1];
- matrixT[i][iu - 1] = q * z + p * matrixT[i][iu];
- matrixT[i][iu] = q * matrixT[i][iu] - p * z;
- }
- // Accumulate transformations
- for (int i = 0; i <= n - 1; i++) {
- z = matrixP[i][iu - 1];
- matrixP[i][iu - 1] = q * z + p * matrixP[i][iu];
- matrixP[i][iu] = q * matrixP[i][iu] - p * z;
- }
- }
- iu -= 2;
- iteration = 0;
- } else {
- // No convergence yet
- computeShift(il, iu, iteration, shift);
- // stop transformation after too many iterations
- ++iteration;
- if (iteration > MAX_ITERATIONS) {
- throw new MathIllegalStateException(LocalizedCoreFormats.CONVERGENCE_FAILED,
- MAX_ITERATIONS);
- }
- // the initial houseHolder vector for the QR step
- final double[] hVec = new double[3];
- final int im = initQRStep(il, iu, shift, hVec);
- performDoubleQRStep(il, im, iu, shift, hVec, norm);
- }
- }
- }
- /**
- * Computes the L1 norm of the (quasi-)triangular matrix T.
- *
- * @return the L1 norm of matrix T
- */
- private double getNorm() {
- double norm = 0.0;
- for (int i = 0; i < matrixT.length; i++) {
- // as matrix T is (quasi-)triangular, also take the sub-diagonal element into account
- for (int j = FastMath.max(i - 1, 0); j < matrixT.length; j++) {
- norm += FastMath.abs(matrixT[i][j]);
- }
- }
- return norm;
- }
- /**
- * Find the first small sub-diagonal element and returns its index.
- *
- * @param startIdx the starting index for the search
- * @param norm the L1 norm of the matrix
- * @return the index of the first small sub-diagonal element
- */
- private int findSmallSubDiagonalElement(final int startIdx, final double norm) {
- int l = startIdx;
- while (l > 0) {
- double s = FastMath.abs(matrixT[l - 1][l - 1]) + FastMath.abs(matrixT[l][l]);
- if (s == 0.0) {
- s = norm;
- }
- if (FastMath.abs(matrixT[l][l - 1]) < epsilon * s) {
- break;
- }
- l--;
- }
- return l;
- }
- /**
- * Compute the shift for the current iteration.
- *
- * @param l the index of the small sub-diagonal element
- * @param idx the current eigenvalue index
- * @param iteration the current iteration
- * @param shift holder for shift information
- */
- private void computeShift(final int l, final int idx, final int iteration, final ShiftInfo shift) {
- // Form shift
- shift.x = matrixT[idx][idx];
- shift.y = shift.w = 0.0;
- if (l < idx) {
- shift.y = matrixT[idx - 1][idx - 1];
- shift.w = matrixT[idx][idx - 1] * matrixT[idx - 1][idx];
- }
- // Wilkinson's original ad hoc shift
- if (iteration == 10) {
- shift.exShift += shift.x;
- for (int i = 0; i <= idx; i++) {
- matrixT[i][i] -= shift.x;
- }
- final double s = FastMath.abs(matrixT[idx][idx - 1]) + FastMath.abs(matrixT[idx - 1][idx - 2]);
- shift.x = 0.75 * s;
- shift.y = 0.75 * s;
- shift.w = -0.4375 * s * s;
- }
- // MATLAB's new ad hoc shift
- if (iteration == 30) {
- double s = (shift.y - shift.x) / 2.0;
- s = s * s + shift.w;
- if (s > 0.0) {
- s = FastMath.sqrt(s);
- if (shift.y < shift.x) {
- s = -s;
- }
- s = shift.x - shift.w / ((shift.y - shift.x) / 2.0 + s);
- for (int i = 0; i <= idx; i++) {
- matrixT[i][i] -= s;
- }
- shift.exShift += s;
- shift.x = shift.y = shift.w = 0.964;
- }
- }
- }
- /**
- * Initialize the householder vectors for the QR step.
- *
- * @param il the index of the small sub-diagonal element
- * @param iu the current eigenvalue index
- * @param shift shift information holder
- * @param hVec the initial houseHolder vector
- * @return the start index for the QR step
- */
- private int initQRStep(int il, final int iu, final ShiftInfo shift, double[] hVec) {
- // Look for two consecutive small sub-diagonal elements
- int im = iu - 2;
- while (im >= il) {
- final double z = matrixT[im][im];
- final double r = shift.x - z;
- double s = shift.y - z;
- hVec[0] = (r * s - shift.w) / matrixT[im + 1][im] + matrixT[im][im + 1];
- hVec[1] = matrixT[im + 1][im + 1] - z - r - s;
- hVec[2] = matrixT[im + 2][im + 1];
- if (im == il) {
- break;
- }
- final double lhs = FastMath.abs(matrixT[im][im - 1]) * (FastMath.abs(hVec[1]) + FastMath.abs(hVec[2]));
- final double rhs = FastMath.abs(hVec[0]) * (FastMath.abs(matrixT[im - 1][im - 1]) +
- FastMath.abs(z) +
- FastMath.abs(matrixT[im + 1][im + 1]));
- if (lhs < epsilon * rhs) {
- break;
- }
- im--;
- }
- return im;
- }
- /**
- * Perform a double QR step involving rows l:idx and columns m:n
- *
- * @param il the index of the small sub-diagonal element
- * @param im the start index for the QR step
- * @param iu the current eigenvalue index
- * @param shift shift information holder
- * @param hVec the initial houseHolder vector
- * @param norm matrix norm
- */
- private void performDoubleQRStep(final int il, final int im, final int iu,
- final ShiftInfo shift, final double[] hVec,
- final double norm) {
- final int n = matrixT.length;
- double p = hVec[0];
- double q = hVec[1];
- double r = hVec[2];
- for (int k = im; k <= iu - 1; k++) {
- boolean notlast = k != (iu - 1);
- if (k != im) {
- p = matrixT[k][k - 1];
- q = matrixT[k + 1][k - 1];
- r = notlast ? matrixT[k + 2][k - 1] : 0.0;
- shift.x = FastMath.abs(p) + FastMath.abs(q) + FastMath.abs(r);
- if (Precision.equals(shift.x, 0.0, epsilon * norm)) {
- continue;
- }
- p /= shift.x;
- q /= shift.x;
- r /= shift.x;
- }
- double s = FastMath.sqrt(p * p + q * q + r * r);
- if (p < 0.0) {
- s = -s;
- }
- if (s != 0.0) {
- if (k != im) {
- matrixT[k][k - 1] = -s * shift.x;
- } else if (il != im) {
- matrixT[k][k - 1] = -matrixT[k][k - 1];
- }
- p += s;
- shift.x = p / s;
- shift.y = q / s;
- double z = r / s;
- q /= p;
- r /= p;
- // Row modification
- for (int j = k; j < n; j++) {
- p = matrixT[k][j] + q * matrixT[k + 1][j];
- if (notlast) {
- p += r * matrixT[k + 2][j];
- matrixT[k + 2][j] -= p * z;
- }
- matrixT[k][j] -= p * shift.x;
- matrixT[k + 1][j] -= p * shift.y;
- }
- // Column modification
- for (int i = 0; i <= FastMath.min(iu, k + 3); i++) {
- p = shift.x * matrixT[i][k] + shift.y * matrixT[i][k + 1];
- if (notlast) {
- p += z * matrixT[i][k + 2];
- matrixT[i][k + 2] -= p * r;
- }
- matrixT[i][k] -= p;
- matrixT[i][k + 1] -= p * q;
- }
- // Accumulate transformations
- final int high = matrixT.length - 1;
- for (int i = 0; i <= high; i++) {
- p = shift.x * matrixP[i][k] + shift.y * matrixP[i][k + 1];
- if (notlast) {
- p += z * matrixP[i][k + 2];
- matrixP[i][k + 2] -= p * r;
- }
- matrixP[i][k] -= p;
- matrixP[i][k + 1] -= p * q;
- }
- } // (s != 0)
- } // k loop
- // clean up pollution due to round-off errors
- for (int i = im + 2; i <= iu; i++) {
- matrixT[i][i-2] = 0.0;
- if (i > im + 2) {
- matrixT[i][i-3] = 0.0;
- }
- }
- }
- /**
- * Internal data structure holding the current shift information.
- * Contains variable names as present in the original JAMA code.
- */
- private static class ShiftInfo {
- // CHECKSTYLE: stop all
- /** x shift info */
- double x;
- /** y shift info */
- double y;
- /** w shift info */
- double w;
- /** Indicates an exceptional shift. */
- double exShift;
- // CHECKSTYLE: resume all
- }
- }