RectangularCholeskyDecomposition.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.linear;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- /**
- * Calculates the rectangular Cholesky decomposition of a matrix.
- * <p>The rectangular Cholesky decomposition of a real symmetric positive
- * semidefinite matrix A consists of a rectangular matrix B with the same
- * number of rows such that: A is almost equal to BB<sup>T</sup>, depending
- * on a user-defined tolerance. In a sense, this is the square root of A.</p>
- * <p>The difference with respect to the regular {@link CholeskyDecomposition}
- * is that rows/columns may be permuted (hence the rectangular shape instead
- * of the traditional triangular shape) and there is a threshold to ignore
- * small diagonal elements. This is used for example to generate {@link
- * org.hipparchus.random.CorrelatedRandomVectorGenerator correlated
- * random n-dimensions vectors} in a p-dimension subspace (p < n).
- * In other words, it allows generating random vectors from a covariance
- * matrix that is only positive semidefinite, and not positive definite.</p>
- * <p>Rectangular Cholesky decomposition is <em>not</em> suited for solving
- * linear systems, so it does not provide any {@link DecompositionSolver
- * decomposition solver}.</p>
- *
- * @see <a href="http://mathworld.wolfram.com/CholeskyDecomposition.html">MathWorld</a>
- * @see <a href="http://en.wikipedia.org/wiki/Cholesky_decomposition">Wikipedia</a>
- */
- public class RectangularCholeskyDecomposition {
- /** Permutated Cholesky root of the symmetric positive semidefinite matrix. */
- private final RealMatrix root;
- /** Rank of the symmetric positive semidefinite matrix. */
- private int rank;
- /**
- * Decompose a symmetric positive semidefinite matrix.
- * <p>
- * <b>Note:</b> this constructor follows the linpack method to detect dependent
- * columns by proceeding with the Cholesky algorithm until a nonpositive diagonal
- * element is encountered.
- *
- * @see <a href="http://eprints.ma.man.ac.uk/1193/01/covered/MIMS_ep2008_56.pdf">
- * Analysis of the Cholesky Decomposition of a Semi-definite Matrix</a>
- *
- * @param matrix Symmetric positive semidefinite matrix.
- * @exception MathIllegalArgumentException if the matrix is not
- * positive semidefinite.
- */
- public RectangularCholeskyDecomposition(RealMatrix matrix)
- throws MathIllegalArgumentException {
- this(matrix, 0);
- }
- /**
- * Decompose a symmetric positive semidefinite matrix.
- *
- * @param matrix Symmetric positive semidefinite matrix.
- * @param small Diagonal elements threshold under which columns are
- * considered to be dependent on previous ones and are discarded.
- * @exception MathIllegalArgumentException if the matrix is not
- * positive semidefinite.
- */
- public RectangularCholeskyDecomposition(RealMatrix matrix, double small)
- throws MathIllegalArgumentException {
- final int order = matrix.getRowDimension();
- final double[][] c = matrix.getData();
- final double[][] b = new double[order][order];
- int[] index = new int[order];
- for (int i = 0; i < order; ++i) {
- index[i] = i;
- }
- int r = 0;
- for (boolean loop = true; loop;) {
- // find maximal diagonal element
- int swapR = r;
- for (int i = r + 1; i < order; ++i) {
- int ii = index[i];
- int isr = index[swapR];
- if (c[ii][ii] > c[isr][isr]) {
- swapR = i;
- }
- }
- // swap elements
- if (swapR != r) {
- final int tmpIndex = index[r];
- index[r] = index[swapR];
- index[swapR] = tmpIndex;
- final double[] tmpRow = b[r];
- b[r] = b[swapR];
- b[swapR] = tmpRow;
- }
- // check diagonal element
- int ir = index[r];
- if (c[ir][ir] <= small) {
- if (r == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NOT_POSITIVE_DEFINITE_MATRIX);
- }
- // check remaining diagonal elements
- for (int i = r; i < order; ++i) {
- if (c[index[i]][index[i]] < -small) {
- // there is at least one sufficiently negative diagonal element,
- // the symmetric positive semidefinite matrix is wrong
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NOT_POSITIVE_DEFINITE_MATRIX);
- }
- }
- // all remaining diagonal elements are close to zero, we consider we have
- // found the rank of the symmetric positive semidefinite matrix
- loop = false;
- } else {
- // transform the matrix
- final double sqrt = FastMath.sqrt(c[ir][ir]);
- b[r][r] = sqrt;
- final double inverse = 1 / sqrt;
- final double inverse2 = 1 / c[ir][ir];
- for (int i = r + 1; i < order; ++i) {
- final int ii = index[i];
- final double e = inverse * c[ii][ir];
- b[i][r] = e;
- c[ii][ii] -= c[ii][ir] * c[ii][ir] * inverse2;
- for (int j = r + 1; j < i; ++j) {
- final int ij = index[j];
- final double f = c[ii][ij] - e * b[j][r];
- c[ii][ij] = f;
- c[ij][ii] = f;
- }
- }
- // prepare next iteration
- loop = ++r < order;
- }
- }
- // build the root matrix
- rank = r;
- root = MatrixUtils.createRealMatrix(order, r);
- for (int i = 0; i < order; ++i) {
- for (int j = 0; j < r; ++j) {
- root.setEntry(index[i], j, b[i][j]);
- }
- }
- }
- /** Get the root of the covariance matrix.
- * The root is the rectangular matrix <code>B</code> such that
- * the covariance matrix is equal to <code>B.B<sup>T</sup></code>
- * @return root of the square matrix
- * @see #getRank()
- */
- public RealMatrix getRootMatrix() {
- return root;
- }
- /** Get the rank of the symmetric positive semidefinite matrix.
- * The r is the number of independent rows in the symmetric positive semidefinite
- * matrix, it is also the number of columns of the rectangular
- * matrix of the decomposition.
- * @return r of the square matrix.
- * @see #getRootMatrix()
- */
- public int getRank() {
- return rank;
- }
- }