MatrixUtils.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.linear;
- import java.util.ArrayList;
- import java.util.Arrays;
- import java.util.List;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.FieldElement;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.fraction.BigFraction;
- import org.hipparchus.fraction.Fraction;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.MathUtils;
- import org.hipparchus.util.Precision;
- /**
- * A collection of static methods that operate on or return matrices.
- *
- */
- public class MatrixUtils {
- /**
- * The default format for {@link RealMatrix} objects.
- */
- public static final RealMatrixFormat DEFAULT_FORMAT = RealMatrixFormat.getRealMatrixFormat();
- /**
- * A format for {@link RealMatrix} objects compatible with octave.
- */
- public static final RealMatrixFormat OCTAVE_FORMAT = new RealMatrixFormat("[", "]", "", "", "; ", ", ");
- /** Pade coefficients required for the matrix exponential calculation. */
- private static final double[] PADE_COEFFICIENTS_3 = {
- 120.0,
- 60.0,
- 12.0,
- 1.0
- };
- /** Pade coefficients required for the matrix exponential calculation. */
- private static final double[] PADE_COEFFICIENTS_5 = {
- 30240.0,
- 15120.0,
- 3360.0,
- 420.0,
- 30.0,
- 1
- };
- /** Pade coefficients required for the matrix exponential calculation. */
- private static final double[] PADE_COEFFICIENTS_7 = {
- 17297280.0,
- 8648640.0,
- 1995840.0,
- 277200.0,
- 25200.0,
- 1512.0,
- 56.0,
- 1.0
- };
- /** Pade coefficients required for the matrix exponential calculation. */
- private static final double[] PADE_COEFFICIENTS_9 = {
- 17643225600.0,
- 8821612800.0,
- 2075673600.0,
- 302702400.0,
- 30270240.0,
- 2162160.0,
- 110880.0,
- 3960.0,
- 90.0,
- 1.0
- };
- /** Pade coefficients required for the matrix exponential calculation. */
- private static final double[] PADE_COEFFICIENTS_13 = {
- 6.476475253248e+16,
- 3.238237626624e+16,
- 7.7717703038976e+15,
- 1.1873537964288e+15,
- 129060195264000.0,
- 10559470521600.0,
- 670442572800.0,
- 33522128640.0,
- 1323241920.0,
- 40840800.0,
- 960960.0,
- 16380.0,
- 182.0,
- 1.0
- };
- /**
- * Private constructor.
- */
- private MatrixUtils() {
- super();
- }
- /**
- * Returns a {@link RealMatrix} with specified dimensions.
- * <p>The type of matrix returned depends on the dimension. Below
- * 2<sup>12</sup> elements (i.e. 4096 elements or 64×64 for a
- * square matrix) which can be stored in a 32kB array, a {@link
- * Array2DRowRealMatrix} instance is built. Above this threshold a {@link
- * BlockRealMatrix} instance is built.</p>
- * <p>The matrix elements are all set to 0.0.</p>
- * @param rows number of rows of the matrix
- * @param columns number of columns of the matrix
- * @return RealMatrix with specified dimensions
- * @see #createRealMatrix(double[][])
- */
- public static RealMatrix createRealMatrix(final int rows, final int columns) {
- return (rows * columns <= 4096) ?
- new Array2DRowRealMatrix(rows, columns) : new BlockRealMatrix(rows, columns);
- }
- /**
- * Returns a {@link FieldMatrix} with specified dimensions.
- * <p>The type of matrix returned depends on the dimension. Below
- * 2<sup>12</sup> elements (i.e. 4096 elements or 64×64 for a
- * square matrix), a {@link FieldMatrix} instance is built. Above
- * this threshold a {@link BlockFieldMatrix} instance is built.</p>
- * <p>The matrix elements are all set to field.getZero().</p>
- * @param <T> the type of the field elements
- * @param field field to which the matrix elements belong
- * @param rows number of rows of the matrix
- * @param columns number of columns of the matrix
- * @return FieldMatrix with specified dimensions
- * @see #createFieldMatrix(FieldElement[][])
- */
- public static <T extends FieldElement<T>> FieldMatrix<T> createFieldMatrix(final Field<T> field,
- final int rows,
- final int columns) {
- return (rows * columns <= 4096) ?
- new Array2DRowFieldMatrix<>(field, rows, columns) : new BlockFieldMatrix<>(field, rows, columns);
- }
- /**
- * Returns a {@link RealMatrix} whose entries are the the values in the
- * the input array.
- * <p>The type of matrix returned depends on the dimension. Below
- * 2<sup>12</sup> elements (i.e. 4096 elements or 64×64 for a
- * square matrix) which can be stored in a 32kB array, a {@link
- * Array2DRowRealMatrix} instance is built. Above this threshold a {@link
- * BlockRealMatrix} instance is built.</p>
- * <p>The input array is copied, not referenced.</p>
- *
- * @param data input array
- * @return RealMatrix containing the values of the array
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if {@code data} is not rectangular (not all rows have the same length).
- * @throws MathIllegalArgumentException if a row or column is empty.
- * @throws NullArgumentException if either {@code data} or {@code data[0]}
- * is {@code null}.
- * @throws MathIllegalArgumentException if {@code data} is not rectangular.
- * @see #createRealMatrix(int, int)
- */
- public static RealMatrix createRealMatrix(double[][] data)
- throws MathIllegalArgumentException, NullArgumentException {
- if (data == null ||
- data[0] == null) {
- throw new NullArgumentException();
- }
- return (data.length * data[0].length <= 4096) ?
- new Array2DRowRealMatrix(data) : new BlockRealMatrix(data);
- }
- /**
- * Returns a {@link FieldMatrix} whose entries are the the values in the
- * the input array.
- * <p>The type of matrix returned depends on the dimension. Below
- * 2<sup>12</sup> elements (i.e. 4096 elements or 64×64 for a
- * square matrix), a {@link FieldMatrix} instance is built. Above
- * this threshold a {@link BlockFieldMatrix} instance is built.</p>
- * <p>The input array is copied, not referenced.</p>
- * @param <T> the type of the field elements
- * @param data input array
- * @return a matrix containing the values of the array.
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if {@code data} is not rectangular (not all rows have the same length).
- * @throws MathIllegalArgumentException if a row or column is empty.
- * @throws NullArgumentException if either {@code data} or {@code data[0]}
- * is {@code null}.
- * @see #createFieldMatrix(Field, int, int)
- */
- public static <T extends FieldElement<T>> FieldMatrix<T> createFieldMatrix(T[][] data)
- throws MathIllegalArgumentException, NullArgumentException {
- if (data == null ||
- data[0] == null) {
- throw new NullArgumentException();
- }
- return (data.length * data[0].length <= 4096) ?
- new Array2DRowFieldMatrix<>(data) : new BlockFieldMatrix<>(data);
- }
- /**
- * Returns <code>dimension x dimension</code> identity matrix.
- *
- * @param dimension dimension of identity matrix to generate
- * @return identity matrix
- * @throws IllegalArgumentException if dimension is not positive
- */
- public static RealMatrix createRealIdentityMatrix(int dimension) {
- final RealMatrix m = createRealMatrix(dimension, dimension);
- for (int i = 0; i < dimension; ++i) {
- m.setEntry(i, i, 1.0);
- }
- return m;
- }
- /**
- * Returns <code>dimension x dimension</code> identity matrix.
- *
- * @param <T> the type of the field elements
- * @param field field to which the elements belong
- * @param dimension dimension of identity matrix to generate
- * @return identity matrix
- * @throws IllegalArgumentException if dimension is not positive
- */
- public static <T extends FieldElement<T>> FieldMatrix<T>
- createFieldIdentityMatrix(final Field<T> field, final int dimension) {
- final T zero = field.getZero();
- final T one = field.getOne();
- final T[][] d = MathArrays.buildArray(field, dimension, dimension);
- for (int row = 0; row < dimension; row++) {
- final T[] dRow = d[row];
- Arrays.fill(dRow, zero);
- dRow[row] = one;
- }
- return new Array2DRowFieldMatrix<>(field, d, false);
- }
- /**
- * Returns a diagonal matrix with specified elements.
- *
- * @param diagonal diagonal elements of the matrix (the array elements
- * will be copied)
- * @return diagonal matrix
- */
- public static RealMatrix createRealDiagonalMatrix(final double[] diagonal) {
- final RealMatrix m = createRealMatrix(diagonal.length, diagonal.length);
- for (int i = 0; i < diagonal.length; ++i) {
- m.setEntry(i, i, diagonal[i]);
- }
- return m;
- }
- /**
- * Returns a diagonal matrix with specified elements.
- *
- * @param <T> the type of the field elements
- * @param diagonal diagonal elements of the matrix (the array elements
- * will be copied)
- * @return diagonal matrix
- */
- public static <T extends FieldElement<T>> FieldMatrix<T>
- createFieldDiagonalMatrix(final T[] diagonal) {
- final FieldMatrix<T> m =
- createFieldMatrix(diagonal[0].getField(), diagonal.length, diagonal.length);
- for (int i = 0; i < diagonal.length; ++i) {
- m.setEntry(i, i, diagonal[i]);
- }
- return m;
- }
- /**
- * Creates a {@link RealVector} using the data from the input array.
- *
- * @param data the input data
- * @return a data.length RealVector
- * @throws MathIllegalArgumentException if {@code data} is empty.
- * @throws NullArgumentException if {@code data} is {@code null}.
- */
- public static RealVector createRealVector(double[] data)
- throws MathIllegalArgumentException, NullArgumentException {
- if (data == null) {
- throw new NullArgumentException();
- }
- return new ArrayRealVector(data, true);
- }
- /**
- * Creates a {@link RealVector} with specified dimensions.
- *
- * @param dimension dimension of the vector
- * @return a new vector
- * @since 1.3
- */
- public static RealVector createRealVector(final int dimension) {
- return new ArrayRealVector(new double[dimension]);
- }
- /**
- * Creates a {@link FieldVector} using the data from the input array.
- *
- * @param <T> the type of the field elements
- * @param data the input data
- * @return a data.length FieldVector
- * @throws MathIllegalArgumentException if {@code data} is empty.
- * @throws NullArgumentException if {@code data} is {@code null}.
- * @throws MathIllegalArgumentException if {@code data} has 0 elements
- */
- public static <T extends FieldElement<T>> FieldVector<T> createFieldVector(final T[] data)
- throws MathIllegalArgumentException, NullArgumentException {
- if (data == null) {
- throw new NullArgumentException();
- }
- if (data.length == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.VECTOR_MUST_HAVE_AT_LEAST_ONE_ELEMENT);
- }
- return new ArrayFieldVector<>(data[0].getField(), data, true);
- }
- /**
- * Creates a {@link FieldVector} with specified dimensions.
- *
- * @param <T> the type of the field elements
- * @param field field to which array elements belong
- * @param dimension dimension of the vector
- * @return a new vector
- * @since 1.3
- */
- public static <T extends FieldElement<T>> FieldVector<T> createFieldVector(final Field<T> field, final int dimension) {
- return new ArrayFieldVector<>(MathArrays.buildArray(field, dimension));
- }
- /**
- * Create a row {@link RealMatrix} using the data from the input
- * array.
- *
- * @param rowData the input row data
- * @return a 1 x rowData.length RealMatrix
- * @throws MathIllegalArgumentException if {@code rowData} is empty.
- * @throws NullArgumentException if {@code rowData} is {@code null}.
- */
- public static RealMatrix createRowRealMatrix(double[] rowData)
- throws MathIllegalArgumentException, NullArgumentException {
- if (rowData == null) {
- throw new NullArgumentException();
- }
- final int nCols = rowData.length;
- final RealMatrix m = createRealMatrix(1, nCols);
- for (int i = 0; i < nCols; ++i) {
- m.setEntry(0, i, rowData[i]);
- }
- return m;
- }
- /**
- * Create a row {@link FieldMatrix} using the data from the input
- * array.
- *
- * @param <T> the type of the field elements
- * @param rowData the input row data
- * @return a 1 x rowData.length FieldMatrix
- * @throws MathIllegalArgumentException if {@code rowData} is empty.
- * @throws NullArgumentException if {@code rowData} is {@code null}.
- */
- public static <T extends FieldElement<T>> FieldMatrix<T>
- createRowFieldMatrix(final T[] rowData)
- throws MathIllegalArgumentException, NullArgumentException {
- if (rowData == null) {
- throw new NullArgumentException();
- }
- final int nCols = rowData.length;
- if (nCols == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.AT_LEAST_ONE_COLUMN);
- }
- final FieldMatrix<T> m = createFieldMatrix(rowData[0].getField(), 1, nCols);
- for (int i = 0; i < nCols; ++i) {
- m.setEntry(0, i, rowData[i]);
- }
- return m;
- }
- /**
- * Creates a column {@link RealMatrix} using the data from the input
- * array.
- *
- * @param columnData the input column data
- * @return a columnData x 1 RealMatrix
- * @throws MathIllegalArgumentException if {@code columnData} is empty.
- * @throws NullArgumentException if {@code columnData} is {@code null}.
- */
- public static RealMatrix createColumnRealMatrix(double[] columnData)
- throws MathIllegalArgumentException, NullArgumentException {
- if (columnData == null) {
- throw new NullArgumentException();
- }
- final int nRows = columnData.length;
- final RealMatrix m = createRealMatrix(nRows, 1);
- for (int i = 0; i < nRows; ++i) {
- m.setEntry(i, 0, columnData[i]);
- }
- return m;
- }
- /**
- * Creates a column {@link FieldMatrix} using the data from the input
- * array.
- *
- * @param <T> the type of the field elements
- * @param columnData the input column data
- * @return a columnData x 1 FieldMatrix
- * @throws MathIllegalArgumentException if {@code data} is empty.
- * @throws NullArgumentException if {@code columnData} is {@code null}.
- */
- public static <T extends FieldElement<T>> FieldMatrix<T>
- createColumnFieldMatrix(final T[] columnData)
- throws MathIllegalArgumentException, NullArgumentException {
- if (columnData == null) {
- throw new NullArgumentException();
- }
- final int nRows = columnData.length;
- if (nRows == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.AT_LEAST_ONE_ROW);
- }
- final FieldMatrix<T> m = createFieldMatrix(columnData[0].getField(), nRows, 1);
- for (int i = 0; i < nRows; ++i) {
- m.setEntry(i, 0, columnData[i]);
- }
- return m;
- }
- /**
- * Checks whether a matrix is symmetric, within a given relative tolerance.
- *
- * @param matrix Matrix to check.
- * @param relativeTolerance Tolerance of the symmetry check.
- * @param raiseException If {@code true}, an exception will be raised if
- * the matrix is not symmetric.
- * @return {@code true} if {@code matrix} is symmetric.
- * @throws MathIllegalArgumentException if the matrix is not square.
- * @throws MathIllegalArgumentException if the matrix is not symmetric.
- */
- private static boolean isSymmetricInternal(RealMatrix matrix,
- double relativeTolerance,
- boolean raiseException) {
- final int rows = matrix.getRowDimension();
- if (rows != matrix.getColumnDimension()) {
- if (raiseException) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NON_SQUARE_MATRIX,
- rows, matrix.getColumnDimension());
- } else {
- return false;
- }
- }
- for (int i = 0; i < rows; i++) {
- for (int j = i + 1; j < rows; j++) {
- final double mij = matrix.getEntry(i, j);
- final double mji = matrix.getEntry(j, i);
- if (FastMath.abs(mij - mji) >
- FastMath.max(FastMath.abs(mij), FastMath.abs(mji)) * relativeTolerance) {
- if (raiseException) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NON_SYMMETRIC_MATRIX,
- i, j, relativeTolerance);
- } else {
- return false;
- }
- }
- }
- }
- return true;
- }
- /**
- * Checks whether a matrix is symmetric.
- *
- * @param matrix Matrix to check.
- * @param eps Relative tolerance.
- * @throws MathIllegalArgumentException if the matrix is not square.
- * @throws MathIllegalArgumentException if the matrix is not symmetric.
- */
- public static void checkSymmetric(RealMatrix matrix,
- double eps) {
- isSymmetricInternal(matrix, eps, true);
- }
- /**
- * Checks whether a matrix is symmetric.
- *
- * @param matrix Matrix to check.
- * @param eps Relative tolerance.
- * @return {@code true} if {@code matrix} is symmetric.
- */
- public static boolean isSymmetric(RealMatrix matrix,
- double eps) {
- return isSymmetricInternal(matrix, eps, false);
- }
- /**
- * Check if matrix indices are valid.
- *
- * @param m Matrix.
- * @param row Row index to check.
- * @param column Column index to check.
- * @throws MathIllegalArgumentException if {@code row} or {@code column} is not
- * a valid index.
- */
- public static void checkMatrixIndex(final AnyMatrix m,
- final int row, final int column)
- throws MathIllegalArgumentException {
- checkRowIndex(m, row);
- checkColumnIndex(m, column);
- }
- /**
- * Check if a row index is valid.
- *
- * @param m Matrix.
- * @param row Row index to check.
- * @throws MathIllegalArgumentException if {@code row} is not a valid index.
- */
- public static void checkRowIndex(final AnyMatrix m, final int row)
- throws MathIllegalArgumentException {
- if (row < 0 ||
- row >= m.getRowDimension()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.ROW_INDEX,
- row, 0, m.getRowDimension() - 1);
- }
- }
- /**
- * Check if a column index is valid.
- *
- * @param m Matrix.
- * @param column Column index to check.
- * @throws MathIllegalArgumentException if {@code column} is not a valid index.
- */
- public static void checkColumnIndex(final AnyMatrix m, final int column)
- throws MathIllegalArgumentException {
- if (column < 0 || column >= m.getColumnDimension()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.COLUMN_INDEX,
- column, 0, m.getColumnDimension() - 1);
- }
- }
- /**
- * Check if submatrix ranges indices are valid.
- * Rows and columns are indicated counting from 0 to {@code n - 1}.
- *
- * @param m Matrix.
- * @param startRow Initial row index.
- * @param endRow Final row index.
- * @param startColumn Initial column index.
- * @param endColumn Final column index.
- * @throws MathIllegalArgumentException if the indices are invalid.
- * @throws MathIllegalArgumentException if {@code endRow < startRow} or
- * {@code endColumn < startColumn}.
- */
- public static void checkSubMatrixIndex(final AnyMatrix m,
- final int startRow, final int endRow,
- final int startColumn, final int endColumn)
- throws MathIllegalArgumentException {
- checkRowIndex(m, startRow);
- checkRowIndex(m, endRow);
- if (endRow < startRow) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.INITIAL_ROW_AFTER_FINAL_ROW,
- endRow, startRow, false);
- }
- checkColumnIndex(m, startColumn);
- checkColumnIndex(m, endColumn);
- if (endColumn < startColumn) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.INITIAL_COLUMN_AFTER_FINAL_COLUMN,
- endColumn, startColumn, false);
- }
- }
- /**
- * Check if submatrix ranges indices are valid.
- * Rows and columns are indicated counting from 0 to n-1.
- *
- * @param m Matrix.
- * @param selectedRows Array of row indices.
- * @param selectedColumns Array of column indices.
- * @throws NullArgumentException if {@code selectedRows} or
- * {@code selectedColumns} are {@code null}.
- * @throws MathIllegalArgumentException if the row or column selections are empty (zero
- * length).
- * @throws MathIllegalArgumentException if row or column selections are not valid.
- */
- public static void checkSubMatrixIndex(final AnyMatrix m,
- final int[] selectedRows,
- final int[] selectedColumns)
- throws MathIllegalArgumentException, NullArgumentException {
- if (selectedRows == null) {
- throw new NullArgumentException();
- }
- if (selectedColumns == null) {
- throw new NullArgumentException();
- }
- if (selectedRows.length == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.EMPTY_SELECTED_ROW_INDEX_ARRAY);
- }
- if (selectedColumns.length == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.EMPTY_SELECTED_COLUMN_INDEX_ARRAY);
- }
- for (final int row : selectedRows) {
- checkRowIndex(m, row);
- }
- for (final int column : selectedColumns) {
- checkColumnIndex(m, column);
- }
- }
- /**
- * Check if matrices are addition compatible.
- *
- * @param left Left hand side matrix.
- * @param right Right hand side matrix.
- * @throws MathIllegalArgumentException if the matrices are not addition
- * compatible.
- */
- public static void checkAdditionCompatible(final AnyMatrix left, final AnyMatrix right)
- throws MathIllegalArgumentException {
- if ((left.getRowDimension() != right.getRowDimension()) ||
- (left.getColumnDimension() != right.getColumnDimension())) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH_2x2,
- left.getRowDimension(), left.getColumnDimension(),
- right.getRowDimension(), right.getColumnDimension());
- }
- }
- /**
- * Check if matrices are subtraction compatible
- *
- * @param left Left hand side matrix.
- * @param right Right hand side matrix.
- * @throws MathIllegalArgumentException if the matrices are not addition
- * compatible.
- */
- public static void checkSubtractionCompatible(final AnyMatrix left, final AnyMatrix right)
- throws MathIllegalArgumentException {
- if ((left.getRowDimension() != right.getRowDimension()) ||
- (left.getColumnDimension() != right.getColumnDimension())) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH_2x2,
- left.getRowDimension(), left.getColumnDimension(),
- right.getRowDimension(), right.getColumnDimension());
- }
- }
- /**
- * Check if matrices are multiplication compatible
- *
- * @param left Left hand side matrix.
- * @param right Right hand side matrix.
- * @throws MathIllegalArgumentException if matrices are not multiplication
- * compatible.
- */
- public static void checkMultiplicationCompatible(final AnyMatrix left, final AnyMatrix right)
- throws MathIllegalArgumentException {
- if (left.getColumnDimension() != right.getRowDimension()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- left.getColumnDimension(), right.getRowDimension());
- }
- }
- /**
- * Check if matrices have the same number of columns.
- *
- * @param left Left hand side matrix.
- * @param right Right hand side matrix.
- * @throws MathIllegalArgumentException if matrices don't have the same number of columns.
- * @since 1.3
- */
- public static void checkSameColumnDimension(final AnyMatrix left, final AnyMatrix right)
- throws MathIllegalArgumentException {
- if (left.getColumnDimension() != right.getColumnDimension()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- left.getColumnDimension(), right.getColumnDimension());
- }
- }
- /**
- * Check if matrices have the same number of rows.
- *
- * @param left Left hand side matrix.
- * @param right Right hand side matrix.
- * @throws MathIllegalArgumentException if matrices don't have the same number of rows.
- * @since 1.3
- */
- public static void checkSameRowDimension(final AnyMatrix left, final AnyMatrix right)
- throws MathIllegalArgumentException {
- if (left.getRowDimension() != right.getRowDimension()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- left.getRowDimension(), right.getRowDimension());
- }
- }
- /**
- * Convert a {@link FieldMatrix}/{@link Fraction} matrix to a {@link RealMatrix}.
- * @param m Matrix to convert.
- * @return the converted matrix.
- */
- public static Array2DRowRealMatrix fractionMatrixToRealMatrix(final FieldMatrix<Fraction> m) {
- final FractionMatrixConverter converter = new FractionMatrixConverter();
- m.walkInOptimizedOrder(converter);
- return converter.getConvertedMatrix();
- }
- /** Converter for {@link FieldMatrix}/{@link Fraction}. */
- private static class FractionMatrixConverter extends DefaultFieldMatrixPreservingVisitor<Fraction> {
- /** Converted array. */
- private double[][] data;
- /** Simple constructor. */
- FractionMatrixConverter() {
- super(Fraction.ZERO);
- }
- /** {@inheritDoc} */
- @Override
- public void start(int rows, int columns,
- int startRow, int endRow, int startColumn, int endColumn) {
- data = new double[rows][columns];
- }
- /** {@inheritDoc} */
- @Override
- public void visit(int row, int column, Fraction value) {
- data[row][column] = value.doubleValue();
- }
- /**
- * Get the converted matrix.
- *
- * @return the converted matrix.
- */
- Array2DRowRealMatrix getConvertedMatrix() {
- return new Array2DRowRealMatrix(data, false);
- }
- }
- /**
- * Convert a {@link FieldMatrix}/{@link BigFraction} matrix to a {@link RealMatrix}.
- *
- * @param m Matrix to convert.
- * @return the converted matrix.
- */
- public static Array2DRowRealMatrix bigFractionMatrixToRealMatrix(final FieldMatrix<BigFraction> m) {
- final BigFractionMatrixConverter converter = new BigFractionMatrixConverter();
- m.walkInOptimizedOrder(converter);
- return converter.getConvertedMatrix();
- }
- /** Converter for {@link FieldMatrix}/{@link BigFraction}. */
- private static class BigFractionMatrixConverter extends DefaultFieldMatrixPreservingVisitor<BigFraction> {
- /** Converted array. */
- private double[][] data;
- /** Simple constructor. */
- BigFractionMatrixConverter() {
- super(BigFraction.ZERO);
- }
- /** {@inheritDoc} */
- @Override
- public void start(int rows, int columns,
- int startRow, int endRow, int startColumn, int endColumn) {
- data = new double[rows][columns];
- }
- /** {@inheritDoc} */
- @Override
- public void visit(int row, int column, BigFraction value) {
- data[row][column] = value.doubleValue();
- }
- /**
- * Get the converted matrix.
- *
- * @return the converted matrix.
- */
- Array2DRowRealMatrix getConvertedMatrix() {
- return new Array2DRowRealMatrix(data, false);
- }
- }
- /**Solve a system of composed of a Lower Triangular Matrix
- * {@link RealMatrix}.
- * <p>
- * This method is called to solve systems of equations which are
- * of the lower triangular form. The matrix {@link RealMatrix}
- * is assumed, though not checked, to be in lower triangular form.
- * The vector {@link RealVector} is overwritten with the solution.
- * The matrix is checked that it is square and its dimensions match
- * the length of the vector.
- * </p>
- * @param rm RealMatrix which is lower triangular
- * @param b RealVector this is overwritten
- * @throws MathIllegalArgumentException if the matrix and vector are not
- * conformable
- * @throws MathIllegalArgumentException if the matrix {@code rm} is not square
- * @throws MathRuntimeException if the absolute value of one of the diagonal
- * coefficient of {@code rm} is lower than {@link Precision#SAFE_MIN}
- */
- public static void solveLowerTriangularSystem(RealMatrix rm, RealVector b)
- throws MathIllegalArgumentException, MathRuntimeException {
- if ((rm == null) || (b == null) || ( rm.getRowDimension() != b.getDimension())) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- (rm == null) ? 0 : rm.getRowDimension(),
- (b == null) ? 0 : b.getDimension());
- }
- if( rm.getColumnDimension() != rm.getRowDimension() ){
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NON_SQUARE_MATRIX,
- rm.getRowDimension(), rm.getColumnDimension());
- }
- int rows = rm.getRowDimension();
- for( int i = 0 ; i < rows ; i++ ){
- double diag = rm.getEntry(i, i);
- if( FastMath.abs(diag) < Precision.SAFE_MIN ){
- throw new MathRuntimeException(LocalizedCoreFormats.ZERO_DENOMINATOR);
- }
- double bi = b.getEntry(i)/diag;
- b.setEntry(i, bi );
- for( int j = i+1; j< rows; j++ ){
- b.setEntry(j, b.getEntry(j)-bi*rm.getEntry(j,i) );
- }
- }
- }
- /** Solver a system composed of an Upper Triangular Matrix
- * {@link RealMatrix}.
- * <p>
- * This method is called to solve systems of equations which are
- * of the lower triangular form. The matrix {@link RealMatrix}
- * is assumed, though not checked, to be in upper triangular form.
- * The vector {@link RealVector} is overwritten with the solution.
- * The matrix is checked that it is square and its dimensions match
- * the length of the vector.
- * </p>
- * @param rm RealMatrix which is upper triangular
- * @param b RealVector this is overwritten
- * @throws MathIllegalArgumentException if the matrix and vector are not
- * conformable
- * @throws MathIllegalArgumentException if the matrix {@code rm} is not
- * square
- * @throws MathRuntimeException if the absolute value of one of the diagonal
- * coefficient of {@code rm} is lower than {@link Precision#SAFE_MIN}
- */
- public static void solveUpperTriangularSystem(RealMatrix rm, RealVector b)
- throws MathIllegalArgumentException, MathRuntimeException {
- if ((rm == null) || (b == null) || ( rm.getRowDimension() != b.getDimension())) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- (rm == null) ? 0 : rm.getRowDimension(),
- (b == null) ? 0 : b.getDimension());
- }
- if( rm.getColumnDimension() != rm.getRowDimension() ){
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NON_SQUARE_MATRIX,
- rm.getRowDimension(), rm.getColumnDimension());
- }
- int rows = rm.getRowDimension();
- for( int i = rows-1 ; i >-1 ; i-- ){
- double diag = rm.getEntry(i, i);
- if( FastMath.abs(diag) < Precision.SAFE_MIN ){
- throw new MathRuntimeException(LocalizedCoreFormats.ZERO_DENOMINATOR);
- }
- double bi = b.getEntry(i)/diag;
- b.setEntry(i, bi );
- for( int j = i-1; j>-1; j-- ){
- b.setEntry(j, b.getEntry(j)-bi*rm.getEntry(j,i) );
- }
- }
- }
- /**
- * Computes the inverse of the given matrix by splitting it into
- * 4 sub-matrices.
- *
- * @param m Matrix whose inverse must be computed.
- * @param splitIndex Index that determines the "split" line and
- * column.
- * The element corresponding to this index will part of the
- * upper-left sub-matrix.
- * @return the inverse of {@code m}.
- * @throws MathIllegalArgumentException if {@code m} is not square.
- */
- public static RealMatrix blockInverse(RealMatrix m,
- int splitIndex) {
- final int n = m.getRowDimension();
- if (m.getColumnDimension() != n) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NON_SQUARE_MATRIX,
- m.getRowDimension(), m.getColumnDimension());
- }
- final int splitIndex1 = splitIndex + 1;
- final RealMatrix a = m.getSubMatrix(0, splitIndex, 0, splitIndex);
- final RealMatrix b = m.getSubMatrix(0, splitIndex, splitIndex1, n - 1);
- final RealMatrix c = m.getSubMatrix(splitIndex1, n - 1, 0, splitIndex);
- final RealMatrix d = m.getSubMatrix(splitIndex1, n - 1, splitIndex1, n - 1);
- final SingularValueDecomposition aDec = new SingularValueDecomposition(a);
- final DecompositionSolver aSolver = aDec.getSolver();
- if (!aSolver.isNonSingular()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.SINGULAR_MATRIX);
- }
- final RealMatrix aInv = aSolver.getInverse();
- final SingularValueDecomposition dDec = new SingularValueDecomposition(d);
- final DecompositionSolver dSolver = dDec.getSolver();
- if (!dSolver.isNonSingular()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.SINGULAR_MATRIX);
- }
- final RealMatrix dInv = dSolver.getInverse();
- final RealMatrix tmp1 = a.subtract(b.multiply(dInv).multiply(c));
- final SingularValueDecomposition tmp1Dec = new SingularValueDecomposition(tmp1);
- final DecompositionSolver tmp1Solver = tmp1Dec.getSolver();
- if (!tmp1Solver.isNonSingular()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.SINGULAR_MATRIX);
- }
- final RealMatrix result00 = tmp1Solver.getInverse();
- final RealMatrix tmp2 = d.subtract(c.multiply(aInv).multiply(b));
- final SingularValueDecomposition tmp2Dec = new SingularValueDecomposition(tmp2);
- final DecompositionSolver tmp2Solver = tmp2Dec.getSolver();
- if (!tmp2Solver.isNonSingular()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.SINGULAR_MATRIX);
- }
- final RealMatrix result11 = tmp2Solver.getInverse();
- final RealMatrix result01 = aInv.multiply(b).multiply(result11).scalarMultiply(-1);
- final RealMatrix result10 = dInv.multiply(c).multiply(result00).scalarMultiply(-1);
- final RealMatrix result = new Array2DRowRealMatrix(n, n);
- result.setSubMatrix(result00.getData(), 0, 0);
- result.setSubMatrix(result01.getData(), 0, splitIndex1);
- result.setSubMatrix(result10.getData(), splitIndex1, 0);
- result.setSubMatrix(result11.getData(), splitIndex1, splitIndex1);
- return result;
- }
- /**
- * Computes the inverse of the given matrix.
- * <p>
- * By default, the inverse of the matrix is computed using the QR-decomposition,
- * unless a more efficient method can be determined for the input matrix.
- * <p>
- * Note: this method will use a singularity threshold of 0,
- * use {@link #inverse(RealMatrix, double)} if a different threshold is needed.
- *
- * @param matrix Matrix whose inverse shall be computed
- * @return the inverse of {@code matrix}
- * @throws NullArgumentException if {@code matrix} is {@code null}
- * @throws MathIllegalArgumentException if m is singular
- * @throws MathIllegalArgumentException if matrix is not square
- */
- public static RealMatrix inverse(RealMatrix matrix)
- throws MathIllegalArgumentException, NullArgumentException {
- return inverse(matrix, 0);
- }
- /**
- * Computes the inverse of the given matrix.
- * <p>
- * By default, the inverse of the matrix is computed using the QR-decomposition,
- * unless a more efficient method can be determined for the input matrix.
- *
- * @param matrix Matrix whose inverse shall be computed
- * @param threshold Singularity threshold
- * @return the inverse of {@code m}
- * @throws NullArgumentException if {@code matrix} is {@code null}
- * @throws MathIllegalArgumentException if matrix is singular
- * @throws MathIllegalArgumentException if matrix is not square
- */
- public static RealMatrix inverse(RealMatrix matrix, double threshold)
- throws MathIllegalArgumentException, NullArgumentException {
- MathUtils.checkNotNull(matrix);
- if (!matrix.isSquare()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NON_SQUARE_MATRIX,
- matrix.getRowDimension(), matrix.getColumnDimension());
- }
- if (matrix instanceof DiagonalMatrix) {
- return ((DiagonalMatrix) matrix).inverse(threshold);
- } else {
- QRDecomposition decomposition = new QRDecomposition(matrix, threshold);
- return decomposition.getSolver().getInverse();
- }
- }
- /**
- * Computes the <a href="https://mathworld.wolfram.com/MatrixExponential.html">
- * matrix exponential</a> of the given matrix.
- *
- * The algorithm implementation follows the Pade approximant method of
- * <p>Higham, Nicholas J. “The Scaling and Squaring Method for the Matrix Exponential
- * Revisited.” SIAM Journal on Matrix Analysis and Applications 26, no. 4 (January 2005): 1179–93.</p>
- *
- * @param rm RealMatrix whose inverse shall be computed
- * @return The inverse of {@code rm}
- * @throws MathIllegalArgumentException if matrix is not square
- */
- public static RealMatrix matrixExponential(final RealMatrix rm) {
- // Check that the input matrix is square
- if (!rm.isSquare()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NON_SQUARE_MATRIX,
- rm.getRowDimension(), rm.getColumnDimension());
- }
- // Copy input matrix
- int dim = rm.getRowDimension();
- final RealMatrix identity = createRealIdentityMatrix(dim);
- RealMatrix scaledMatrix = rm.copy();
- // Select pade degree required
- final double l1Norm = rm.getNorm1();
- double[] padeCoefficients;
- int squaringCount = 0;
- if (l1Norm < 1.495585217958292e-2) {
- padeCoefficients = PADE_COEFFICIENTS_3;
- } else if (l1Norm < 2.539398330063230e-1) {
- padeCoefficients = PADE_COEFFICIENTS_5;
- } else if (l1Norm < 9.504178996162932e-1) {
- padeCoefficients = PADE_COEFFICIENTS_7;
- } else if (l1Norm < 2.097847961257068) {
- padeCoefficients = PADE_COEFFICIENTS_9;
- } else {
- padeCoefficients = PADE_COEFFICIENTS_13;
- // Calculate scaling factor
- final double normScale = 5.371920351148152;
- squaringCount = FastMath.max(0, FastMath.getExponent(l1Norm / normScale));
- // Scale matrix by power of 2
- final int finalSquaringCount = squaringCount;
- scaledMatrix.mapToSelf(x -> FastMath.scalb(x, -finalSquaringCount));
- }
- // Calculate U and V using Horner
- // See Golub, Gene H., and Charles F. van Loan. Matrix Computations. 4th ed.
- // John Hopkins University Press, 2013. pages 530/531
- final RealMatrix scaledMatrix2 = scaledMatrix.multiply(scaledMatrix);
- final int coeffLength = padeCoefficients.length;
- // Calculate V
- RealMatrix padeV = createRealMatrix(dim, dim);
- for (int i = coeffLength - 1; i > 1; i -= 2) {
- padeV = scaledMatrix2.multiply(padeV.add(identity.scalarMultiply(padeCoefficients[i])));
- }
- padeV = scaledMatrix.multiply(padeV.add(identity.scalarMultiply(padeCoefficients[1])));
- // Calculate U
- RealMatrix padeU = createRealMatrix(dim, dim);
- for (int i = coeffLength - 2; i > 1; i -= 2) {
- padeU = scaledMatrix2.multiply(padeU.add(identity.scalarMultiply(padeCoefficients[i])));
- }
- padeU = padeU.add(identity.scalarMultiply(padeCoefficients[0]));
- // Calculate pade approximate by solving (U-V) F = (U+V) for F
- RealMatrix padeNumer = padeU.add(padeV);
- RealMatrix padeDenom = padeU.subtract(padeV);
- // Calculate the matrix ratio
- QRDecomposition decomposition = new QRDecomposition(padeDenom);
- RealMatrix result = decomposition.getSolver().solve(padeNumer);
- // Repeated squaring if matrix was scaled
- for (int i = 0; i < squaringCount; i++) {
- result = result.multiply(result);
- }
- return result;
- }
- /** Orthonormalize a list of vectors.
- * <p>
- * Orthonormalization is performed by using the Modified Gram-Schmidt process.
- * </p>
- * @param independent list of independent vectors
- * @param threshold projected vectors with a norm less than or equal to this threshold
- * are considered to have zero norm, hence the vectors they come from are not independent from
- * previous vectors
- * @param handler handler for dependent vectors
- * @return orthonormal basis having the same span as {@code independent}
- * @since 2.1
- */
- public static List<RealVector> orthonormalize(final List<RealVector> independent,
- final double threshold, final DependentVectorsHandler handler) {
- // create separate list
- final List<RealVector> basis = new ArrayList<>(independent);
- // loop over basis vectors
- int index = 0;
- while (index < basis.size()) {
- // check dependency
- final RealVector vi = basis.get(index);
- final double norm = vi.getNorm();
- if (norm <= threshold) {
- // the current vector is dependent from the previous ones
- index = handler.manageDependent(index, basis);
- } else {
- // normalize basis vector in place
- vi.mapDivideToSelf(vi.getNorm());
- // project remaining vectors in place
- for (int j = index + 1; j < basis.size(); ++j) {
- final RealVector vj = basis.get(j);
- final double dot = vi.dotProduct(vj);
- for (int k = 0; k < vj.getDimension(); ++k) {
- vj.setEntry(k, vj.getEntry(k) - dot * vi.getEntry(k));
- }
- }
- ++index;
- }
- }
- return basis;
- }
- /** Orthonormalize a list of vectors.
- * <p>
- * Orthonormalization is performed by using the Modified Gram-Schmidt process.
- * </p>
- * @param <T> type of the field elements
- * @param independent list of independent vectors
- * @param threshold projected vectors with a norm less than or equal to this threshold
- * are considered to have zero norm, hence the vectors they come from are not independent from
- * previous vectors
- * @param field type of the files elements
- * @param handler handler for dependent vectors
- * @return orthonormal basis having the same span as {@code independent}
- * @since 2.1
- */
- public static <T extends CalculusFieldElement<T>> List<FieldVector<T>> orthonormalize(final Field<T> field,
- final List<FieldVector<T>> independent,
- final T threshold,
- final DependentVectorsHandler handler) {
- // create separate list
- final List<FieldVector<T>> basis = new ArrayList<>(independent);
- // loop over basis vectors
- int index = 0;
- while (index < basis.size()) {
- // check dependency
- final FieldVector<T> vi = basis.get(index);
- final T norm = vi.dotProduct(vi).sqrt();
- if (norm.subtract(threshold).getReal() <= 0) {
- // the current vector is dependent from the previous ones
- index = handler.manageDependent(field, index, basis);
- } else {
- // normalize basis vector in place
- vi.mapDivideToSelf(norm);
- // project remaining vectors in place
- for (int j = index + 1; j < basis.size(); ++j) {
- final FieldVector<T> vj = basis.get(j);
- final T dot = vi.dotProduct(vj);
- for (int k = 0; k < vj.getDimension(); ++k) {
- vj.setEntry(k, vj.getEntry(k).subtract(dot.multiply(vi.getEntry(k))));
- }
- }
- ++index;
- }
- }
- return basis;
- }
- }