LUDecomposition.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.linear;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- /**
- * Calculates the LUP-decomposition of a square matrix.
- * <p>The LUP-decomposition of a matrix A consists of three matrices L, U and
- * P that satisfy: P×A = L×U. L is lower triangular (with unit
- * diagonal terms), U is upper triangular and P is a permutation matrix. All
- * matrices are m×m.</p>
- * <p>As shown by the presence of the P matrix, this decomposition is
- * implemented using partial pivoting.</p>
- * <p>This class is based on the class with similar name from the
- * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library.</p>
- * <ul>
- * <li>a {@link #getP() getP} method has been added,</li>
- * <li>the {@code det} method has been renamed as {@link #getDeterminant()
- * getDeterminant},</li>
- * <li>the {@code getDoublePivot} method has been removed (but the int based
- * {@link #getPivot() getPivot} method has been kept),</li>
- * <li>the {@code solve} and {@code isNonSingular} methods have been replaced
- * by a {@link #getSolver() getSolver} method and the equivalent methods
- * provided by the returned {@link DecompositionSolver}.</li>
- * </ul>
- *
- * @see <a href="http://mathworld.wolfram.com/LUDecomposition.html">MathWorld</a>
- * @see <a href="http://en.wikipedia.org/wiki/LU_decomposition">Wikipedia</a>
- */
- public class LUDecomposition {
- /** Default bound to determine effective singularity in LU decomposition. */
- private static final double DEFAULT_TOO_SMALL = 1e-11;
- /** Entries of LU decomposition. */
- private final double[][] lu;
- /** Pivot permutation associated with LU decomposition. */
- private final int[] pivot;
- /** Parity of the permutation associated with the LU decomposition. */
- private boolean even;
- /** Singularity indicator. */
- private boolean singular;
- /** Cached value of L. */
- private RealMatrix cachedL;
- /** Cached value of U. */
- private RealMatrix cachedU;
- /** Cached value of P. */
- private RealMatrix cachedP;
- /**
- * Calculates the LU-decomposition of the given matrix.
- * This constructor uses 1e-11 as default value for the singularity
- * threshold.
- *
- * @param matrix Matrix to decompose.
- * @throws MathIllegalArgumentException if matrix is not square.
- */
- public LUDecomposition(RealMatrix matrix) {
- this(matrix, DEFAULT_TOO_SMALL);
- }
- /**
- * Calculates the LU-decomposition of the given matrix.
- * @param matrix The matrix to decompose.
- * @param singularityThreshold threshold (based on partial row norm)
- * under which a matrix is considered singular
- * @throws MathIllegalArgumentException if matrix is not square
- */
- public LUDecomposition(RealMatrix matrix, double singularityThreshold) {
- if (!matrix.isSquare()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NON_SQUARE_MATRIX,
- matrix.getRowDimension(), matrix.getColumnDimension());
- }
- final int m = matrix.getColumnDimension();
- lu = matrix.getData();
- pivot = new int[m];
- cachedL = null;
- cachedU = null;
- cachedP = null;
- // Initialize permutation array and parity
- for (int row = 0; row < m; row++) {
- pivot[row] = row;
- }
- even = true;
- singular = false;
- // Loop over columns
- for (int col = 0; col < m; col++) {
- // upper
- for (int row = 0; row < col; row++) {
- final double[] luRow = lu[row];
- double sum = luRow[col];
- for (int i = 0; i < row; i++) {
- sum -= luRow[i] * lu[i][col];
- }
- luRow[col] = sum;
- }
- // lower
- int max = col; // permutation row
- double largest = Double.NEGATIVE_INFINITY;
- for (int row = col; row < m; row++) {
- final double[] luRow = lu[row];
- double sum = luRow[col];
- for (int i = 0; i < col; i++) {
- sum -= luRow[i] * lu[i][col];
- }
- luRow[col] = sum;
- // maintain best permutation choice
- if (FastMath.abs(sum) > largest) {
- largest = FastMath.abs(sum);
- max = row;
- }
- }
- // Singularity check
- if (FastMath.abs(lu[max][col]) < singularityThreshold) {
- singular = true;
- return;
- }
- // Pivot if necessary
- if (max != col) {
- final double[] luMax = lu[max];
- final double[] luCol = lu[col];
- for (int i = 0; i < m; i++) {
- final double tmp = luMax[i];
- luMax[i] = luCol[i];
- luCol[i] = tmp;
- }
- int temp = pivot[max];
- pivot[max] = pivot[col];
- pivot[col] = temp;
- even = !even;
- }
- // Divide the lower elements by the "winning" diagonal elt.
- final double luDiag = lu[col][col];
- for (int row = col + 1; row < m; row++) {
- lu[row][col] /= luDiag;
- }
- }
- }
- /**
- * Returns the matrix L of the decomposition.
- * <p>L is a lower-triangular matrix</p>
- * @return the L matrix (or null if decomposed matrix is singular)
- */
- public RealMatrix getL() {
- if ((cachedL == null) && !singular) {
- final int m = pivot.length;
- cachedL = MatrixUtils.createRealMatrix(m, m);
- for (int i = 0; i < m; ++i) {
- final double[] luI = lu[i];
- for (int j = 0; j < i; ++j) {
- cachedL.setEntry(i, j, luI[j]);
- }
- cachedL.setEntry(i, i, 1.0);
- }
- }
- return cachedL;
- }
- /**
- * Returns the matrix U of the decomposition.
- * <p>U is an upper-triangular matrix</p>
- * @return the U matrix (or null if decomposed matrix is singular)
- */
- public RealMatrix getU() {
- if ((cachedU == null) && !singular) {
- final int m = pivot.length;
- cachedU = MatrixUtils.createRealMatrix(m, m);
- for (int i = 0; i < m; ++i) {
- final double[] luI = lu[i];
- for (int j = i; j < m; ++j) {
- cachedU.setEntry(i, j, luI[j]);
- }
- }
- }
- return cachedU;
- }
- /**
- * Returns the P rows permutation matrix.
- * <p>P is a sparse matrix with exactly one element set to 1.0 in
- * each row and each column, all other elements being set to 0.0.</p>
- * <p>The positions of the 1 elements are given by the {@link #getPivot()
- * pivot permutation vector}.</p>
- * @return the P rows permutation matrix (or null if decomposed matrix is singular)
- * @see #getPivot()
- */
- public RealMatrix getP() {
- if ((cachedP == null) && !singular) {
- final int m = pivot.length;
- cachedP = MatrixUtils.createRealMatrix(m, m);
- for (int i = 0; i < m; ++i) {
- cachedP.setEntry(i, pivot[i], 1.0);
- }
- }
- return cachedP;
- }
- /**
- * Returns the pivot permutation vector.
- * @return the pivot permutation vector
- * @see #getP()
- */
- public int[] getPivot() {
- return pivot.clone();
- }
- /**
- * Return the determinant of the matrix
- * @return determinant of the matrix
- */
- public double getDeterminant() {
- if (singular) {
- return 0;
- } else {
- final int m = pivot.length;
- double determinant = even ? 1 : -1;
- for (int i = 0; i < m; i++) {
- determinant *= lu[i][i];
- }
- return determinant;
- }
- }
- /**
- * Get a solver for finding the A × X = B solution in exact linear
- * sense.
- * @return a solver
- */
- public DecompositionSolver getSolver() {
- return new Solver();
- }
- /** Specialized solver. */
- private class Solver implements DecompositionSolver {
- /** {@inheritDoc} */
- @Override
- public boolean isNonSingular() {
- return !singular;
- }
- /** {@inheritDoc} */
- @Override
- public RealVector solve(RealVector b) {
- final int m = pivot.length;
- if (b.getDimension() != m) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- b.getDimension(), m);
- }
- if (singular) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.SINGULAR_MATRIX);
- }
- final double[] bp = new double[m];
- // Apply permutations to b
- for (int row = 0; row < m; row++) {
- bp[row] = b.getEntry(pivot[row]);
- }
- // Solve LY = b
- for (int col = 0; col < m; col++) {
- final double bpCol = bp[col];
- for (int i = col + 1; i < m; i++) {
- bp[i] -= bpCol * lu[i][col];
- }
- }
- // Solve UX = Y
- for (int col = m - 1; col >= 0; col--) {
- bp[col] /= lu[col][col];
- final double bpCol = bp[col];
- for (int i = 0; i < col; i++) {
- bp[i] -= bpCol * lu[i][col];
- }
- }
- return new ArrayRealVector(bp, false);
- }
- /** {@inheritDoc} */
- @Override
- public RealMatrix solve(RealMatrix b) {
- final int m = pivot.length;
- if (b.getRowDimension() != m) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- b.getRowDimension(), m);
- }
- if (singular) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.SINGULAR_MATRIX);
- }
- final int nColB = b.getColumnDimension();
- // Apply permutations to b
- final double[][] bp = new double[m][nColB];
- for (int row = 0; row < m; row++) {
- final double[] bpRow = bp[row];
- final int pRow = pivot[row];
- for (int col = 0; col < nColB; col++) {
- bpRow[col] = b.getEntry(pRow, col);
- }
- }
- // Solve LY = b
- for (int col = 0; col < m; col++) {
- final double[] bpCol = bp[col];
- for (int i = col + 1; i < m; i++) {
- final double[] bpI = bp[i];
- final double luICol = lu[i][col];
- for (int j = 0; j < nColB; j++) {
- bpI[j] -= bpCol[j] * luICol;
- }
- }
- }
- // Solve UX = Y
- for (int col = m - 1; col >= 0; col--) {
- final double[] bpCol = bp[col];
- final double luDiag = lu[col][col];
- for (int j = 0; j < nColB; j++) {
- bpCol[j] /= luDiag;
- }
- for (int i = 0; i < col; i++) {
- final double[] bpI = bp[i];
- final double luICol = lu[i][col];
- for (int j = 0; j < nColB; j++) {
- bpI[j] -= bpCol[j] * luICol;
- }
- }
- }
- return new Array2DRowRealMatrix(bp, false);
- }
- /**
- * Get the inverse of the decomposed matrix.
- *
- * @return the inverse matrix.
- * @throws MathIllegalArgumentException if the decomposed matrix is singular.
- */
- @Override
- public RealMatrix getInverse() {
- return solve(MatrixUtils.createRealIdentityMatrix(pivot.length));
- }
- /** {@inheritDoc} */
- @Override
- public int getRowDimension() {
- return lu.length;
- }
- /** {@inheritDoc} */
- @Override
- public int getColumnDimension() {
- return lu[0].length;
- }
- }
- }