EigenDecompositionSymmetric.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.linear;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.Precision;
- /**
- * Calculates the eigen decomposition of a symmetric real matrix.
- * <p>
- * The eigen decomposition of matrix A is a set of two matrices:
- * \(V\) and \(D\) such that \(A V = V D\) where $\(A\),
- * \(V\) and \(D\) are all \(m \times m\) matrices.
- * <p>
- * This class is similar in spirit to the {@code EigenvalueDecomposition}
- * class from the <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a>
- * library, with the following changes:
- * </p>
- * <ul>
- * <li>a {@link #getVT() getVt} method has been added,</li>
- * <li>a {@link #getEigenvalue(int) getEigenvalue} method to pick up a
- * single eigenvalue has been added,</li>
- * <li>a {@link #getEigenvector(int) getEigenvector} method to pick up a
- * single eigenvector has been added,</li>
- * <li>a {@link #getDeterminant() getDeterminant} method has been added.</li>
- * <li>a {@link #getSolver() getSolver} method has been added.</li>
- * </ul>
- * <p>
- * As \(A\) is symmetric, then \(A = V D V^T\) where the eigenvalue matrix \(D\)
- * is diagonal and the eigenvector matrix \(V\) is orthogonal, i.e.
- * {@code A = V.multiply(D.multiply(V.transpose()))} and
- * {@code V.multiply(V.transpose())} equals the identity matrix.
- * </p>
- * <p>
- * The columns of \(V\) represent the eigenvectors in the sense that \(A V = V D\),
- * i.e. {@code A.multiply(V)} equals {@code V.multiply(D)}.
- * The matrix \(V\) may be badly conditioned, or even singular, so the validity of the
- * equation \(A = V D V^{-1}\) depends upon the condition of \(V\).
- * </p>
- * This implementation is based on the paper by A. Drubrulle, R.S. Martin and
- * J.H. Wilkinson "The Implicit QL Algorithm" in Wilksinson and Reinsch (1971)
- * Handbook for automatic computation, vol. 2, Linear algebra, Springer-Verlag,
- * New-York.
- *
- * @see <a href="http://mathworld.wolfram.com/EigenDecomposition.html">MathWorld</a>
- * @see <a href="http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix">Wikipedia</a>
- */
- public class EigenDecompositionSymmetric {
- /** Default epsilon value to use for internal epsilon **/
- public static final double DEFAULT_EPSILON = 1e-12;
- /** Maximum number of iterations accepted in the implicit QL transformation */
- private static final byte MAX_ITER = 30;
- /** Internally used epsilon criteria. */
- private final double epsilon;
- /** Eigenvalues. */
- private double[] eigenvalues;
- /** Eigenvectors. */
- private ArrayRealVector[] eigenvectors;
- /** Cached value of V. */
- private RealMatrix cachedV;
- /** Cached value of D. */
- private DiagonalMatrix cachedD;
- /** Cached value of Vt. */
- private RealMatrix cachedVt;
- /**
- * Calculates the eigen decomposition of the given symmetric real matrix.
- * <p>
- * This constructor uses the {@link #DEFAULT_EPSILON default epsilon} and
- * decreasing order for eigenvalues.
- * </p>
- * @param matrix Matrix to decompose.
- * @throws MathIllegalStateException if the algorithm fails to converge.
- * @throws MathRuntimeException if the decomposition of a general matrix
- * results in a matrix with zero norm
- */
- public EigenDecompositionSymmetric(final RealMatrix matrix) {
- this(matrix, DEFAULT_EPSILON, true);
- }
- /**
- * Calculates the eigen decomposition of the given real matrix.
- * <p>
- * Supports decomposition of a general matrix since 3.1.
- *
- * @param matrix Matrix to decompose.
- * @param epsilon Epsilon used for internal tests (e.g. is singular, eigenvalue ratio, etc.)
- * @param decreasing if true, eigenvalues will be sorted in decreasing order
- * @throws MathIllegalStateException if the algorithm fails to converge.
- * @throws MathRuntimeException if the decomposition of a general matrix
- * results in a matrix with zero norm
- * @since 3.0
- */
- public EigenDecompositionSymmetric(final RealMatrix matrix,
- final double epsilon, final boolean decreasing)
- throws MathRuntimeException {
- this.epsilon = epsilon;
- MatrixUtils.checkSymmetric(matrix, epsilon);
- // transform the matrix to tridiagonal
- final TriDiagonalTransformer transformer = new TriDiagonalTransformer(matrix);
- findEigenVectors(transformer.getMainDiagonalRef(),
- transformer.getSecondaryDiagonalRef(),
- transformer.getQ().getData(),
- decreasing);
- }
- /**
- * Calculates the eigen decomposition of the symmetric tridiagonal matrix.
- * <p>
- * The Householder matrix is assumed to be the identity matrix.
- * </p>
- * <p>
- * This constructor uses the {@link #DEFAULT_EPSILON default epsilon} and
- * decreasing order for eigenvalues.
- * </p>
- * @param main Main diagonal of the symmetric tridiagonal form.
- * @param secondary Secondary of the tridiagonal form.
- * @throws MathIllegalStateException if the algorithm fails to converge.
- */
- public EigenDecompositionSymmetric(final double[] main, final double[] secondary) {
- this(main, secondary, DEFAULT_EPSILON, true);
- }
- /**
- * Calculates the eigen decomposition of the symmetric tridiagonal
- * matrix. The Householder matrix is assumed to be the identity matrix.
- *
- * @param main Main diagonal of the symmetric tridiagonal form.
- * @param secondary Secondary of the tridiagonal form.
- * @param epsilon Epsilon used for internal tests (e.g. is singular, eigenvalue ratio, etc.)
- * @param decreasing if true, eigenvalues will be sorted in decreasing order
- * @throws MathIllegalStateException if the algorithm fails to converge.
- * @since 3.0
- */
- public EigenDecompositionSymmetric(final double[] main, final double[] secondary,
- final double epsilon, final boolean decreasing) {
- this.epsilon = epsilon;
- final int size = main.length;
- final double[][] z = new double[size][size];
- for (int i = 0; i < size; i++) {
- z[i][i] = 1.0;
- }
- findEigenVectors(main.clone(), secondary.clone(), z, decreasing);
- }
- /**
- * Gets the matrix V of the decomposition.
- * V is an orthogonal matrix, i.e. its transpose is also its inverse.
- * The columns of V are the eigenvectors of the original matrix.
- * No assumption is made about the orientation of the system axes formed
- * by the columns of V (e.g. in a 3-dimension space, V can form a left-
- * or right-handed system).
- *
- * @return the V matrix.
- */
- public RealMatrix getV() {
- if (cachedV == null) {
- final int m = eigenvectors.length;
- cachedV = MatrixUtils.createRealMatrix(m, m);
- for (int k = 0; k < m; ++k) {
- cachedV.setColumnVector(k, eigenvectors[k]);
- }
- }
- // return the cached matrix
- return cachedV;
- }
- /**
- * Gets the diagonal matrix D of the decomposition.
- * D is a diagonal matrix.
- * @return the D matrix.
- *
- * @see #getEigenvalues()
- */
- public DiagonalMatrix getD() {
- if (cachedD == null) {
- // cache the matrix for subsequent calls
- cachedD = new DiagonalMatrix(eigenvalues);
- }
- return cachedD;
- }
- /**
- * Get's the value for epsilon which is used for internal tests (e.g. is singular, eigenvalue ratio, etc.)
- *
- * @return the epsilon value.
- */
- public double getEpsilon() { return epsilon; }
- /**
- * Gets the transpose of the matrix V of the decomposition.
- * V is an orthogonal matrix, i.e. its transpose is also its inverse.
- * The columns of V are the eigenvectors of the original matrix.
- * No assumption is made about the orientation of the system axes formed
- * by the columns of V (e.g. in a 3-dimension space, V can form a left-
- * or right-handed system).
- *
- * @return the transpose of the V matrix.
- */
- public RealMatrix getVT() {
- if (cachedVt == null) {
- final int m = eigenvectors.length;
- cachedVt = MatrixUtils.createRealMatrix(m, m);
- for (int k = 0; k < m; ++k) {
- cachedVt.setRowVector(k, eigenvectors[k]);
- }
- }
- // return the cached matrix
- return cachedVt;
- }
- /**
- * Gets a copy of the eigenvalues of the original matrix.
- *
- * @return a copy of the eigenvalues of the original matrix.
- *
- * @see #getD()
- * @see #getEigenvalue(int)
- */
- public double[] getEigenvalues() {
- return eigenvalues.clone();
- }
- /**
- * Returns the i<sup>th</sup> eigenvalue of the original matrix.
- *
- * @param i index of the eigenvalue (counting from 0)
- * @return real part of the i<sup>th</sup> eigenvalue of the original
- * matrix.
- *
- * @see #getD()
- * @see #getEigenvalues()
- */
- public double getEigenvalue(final int i) {
- return eigenvalues[i];
- }
- /**
- * Gets a copy of the i<sup>th</sup> eigenvector of the original matrix.
- * <p>
- * Note that if the the i<sup>th</sup> is complex this method will throw
- * an exception.
- * </p>
- * @param i Index of the eigenvector (counting from 0).
- * @return a copy of the i<sup>th</sup> eigenvector of the original matrix.
- * @see #getD()
- */
- public RealVector getEigenvector(final int i) {
- return eigenvectors[i].copy();
- }
- /**
- * Computes the determinant of the matrix.
- *
- * @return the determinant of the matrix.
- */
- public double getDeterminant() {
- double determinant = 1;
- for (double eigenvalue : eigenvalues) {
- determinant *= eigenvalue;
- }
- return determinant;
- }
- /**
- * Computes the square-root of the matrix.
- * This implementation assumes that the matrix is positive definite.
- *
- * @return the square-root of the matrix.
- * @throws MathRuntimeException if the matrix is not
- * symmetric or not positive definite.
- */
- public RealMatrix getSquareRoot() {
- final double[] sqrtEigenValues = new double[eigenvalues.length];
- for (int i = 0; i < eigenvalues.length; i++) {
- final double eigen = eigenvalues[i];
- if (eigen <= 0) {
- throw new MathRuntimeException(LocalizedCoreFormats.UNSUPPORTED_OPERATION);
- }
- sqrtEigenValues[i] = FastMath.sqrt(eigen);
- }
- final RealMatrix sqrtEigen = MatrixUtils.createRealDiagonalMatrix(sqrtEigenValues);
- final RealMatrix v = getV();
- final RealMatrix vT = getVT();
- return v.multiply(sqrtEigen).multiply(vT);
- }
- /** Gets a solver for finding the \(A \times X = B\) solution in exact linear sense.
- * @return a solver
- */
- public DecompositionSolver getSolver() {
- return new Solver();
- }
- /** Specialized solver. */
- private class Solver implements DecompositionSolver {
- /**
- * Solves the linear equation \(A \times X = B\)for symmetric matrices A.
- * <p>
- * This method only finds exact linear solutions, i.e. solutions for
- * which ||A × X - B|| is exactly 0.
- * </p>
- *
- * @param b Right-hand side of the equation \(A \times X = B\).
- * @return a Vector X that minimizes the 2-norm of \(A \times X - B\).
- *
- * @throws MathIllegalArgumentException if the matrices dimensions do not match.
- * @throws MathIllegalArgumentException if the decomposed matrix is singular.
- */
- @Override
- public RealVector solve(final RealVector b) {
- if (!isNonSingular()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.SINGULAR_MATRIX);
- }
- final int m = eigenvalues.length;
- if (b.getDimension() != m) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- b.getDimension(), m);
- }
- final double[] bp = new double[m];
- for (int i = 0; i < m; ++i) {
- final ArrayRealVector v = eigenvectors[i];
- final double[] vData = v.getDataRef();
- final double s = v.dotProduct(b) / eigenvalues[i];
- for (int j = 0; j < m; ++j) {
- bp[j] += s * vData[j];
- }
- }
- return new ArrayRealVector(bp, false);
- }
- /** {@inheritDoc} */
- @Override
- public RealMatrix solve(RealMatrix b) {
- if (!isNonSingular()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.SINGULAR_MATRIX);
- }
- final int m = eigenvalues.length;
- if (b.getRowDimension() != m) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- b.getRowDimension(), m);
- }
- final int nColB = b.getColumnDimension();
- final double[][] bp = new double[m][nColB];
- final double[] tmpCol = new double[m];
- for (int k = 0; k < nColB; ++k) {
- for (int i = 0; i < m; ++i) {
- tmpCol[i] = b.getEntry(i, k);
- bp[i][k] = 0;
- }
- for (int i = 0; i < m; ++i) {
- final ArrayRealVector v = eigenvectors[i];
- final double[] vData = v.getDataRef();
- double s = 0;
- for (int j = 0; j < m; ++j) {
- s += v.getEntry(j) * tmpCol[j];
- }
- s /= eigenvalues[i];
- for (int j = 0; j < m; ++j) {
- bp[j][k] += s * vData[j];
- }
- }
- }
- return new Array2DRowRealMatrix(bp, false);
- }
- /**
- * Checks whether the decomposed matrix is non-singular.
- *
- * @return true if the decomposed matrix is non-singular.
- */
- @Override
- public boolean isNonSingular() {
- double largestEigenvalueNorm = 0.0;
- // Looping over all values (in case they are not sorted in decreasing
- // order of their norm).
- for (double v : eigenvalues) {
- largestEigenvalueNorm = FastMath.max(largestEigenvalueNorm, FastMath.abs(v));
- }
- // Corner case: zero matrix, all exactly 0 eigenvalues
- if (largestEigenvalueNorm == 0.0) {
- return false;
- }
- for (double eigenvalue : eigenvalues) {
- // Looking for eigenvalues that are 0, where we consider anything much much smaller
- // than the largest eigenvalue to be effectively 0.
- if (Precision.equals(FastMath.abs(eigenvalue) / largestEigenvalueNorm, 0, epsilon)) {
- return false;
- }
- }
- return true;
- }
- /**
- * Get the inverse of the decomposed matrix.
- *
- * @return the inverse matrix.
- * @throws MathIllegalArgumentException if the decomposed matrix is singular.
- */
- @Override
- public RealMatrix getInverse() {
- if (!isNonSingular()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.SINGULAR_MATRIX);
- }
- final int m = eigenvalues.length;
- final double[][] invData = new double[m][m];
- for (int i = 0; i < m; ++i) {
- final double[] invI = invData[i];
- for (int j = 0; j < m; ++j) {
- double invIJ = 0;
- for (int k = 0; k < m; ++k) {
- final double[] vK = eigenvectors[k].getDataRef();
- invIJ += vK[i] * vK[j] / eigenvalues[k];
- }
- invI[j] = invIJ;
- }
- }
- return MatrixUtils.createRealMatrix(invData);
- }
- /** {@inheritDoc} */
- @Override
- public int getRowDimension() {
- return eigenvalues.length;
- }
- /** {@inheritDoc} */
- @Override
- public int getColumnDimension() {
- return eigenvalues.length;
- }
- }
- /**
- * Find eigenvalues and eigenvectors (Dubrulle et al., 1971)
- * @param main main diagonal of the tridiagonal matrix
- * @param secondary secondary diagonal of the tridiagonal matrix
- * @param householderMatrix Householder matrix of the transformation
- * @param decreasing if true, eigenvalues will be sorted in decreasing order
- * to tridiagonal form.
- */
- private void findEigenVectors(final double[] main, final double[] secondary,
- final double[][] householderMatrix, final boolean decreasing) {
- final double[][]z = householderMatrix.clone();
- final int n = main.length;
- eigenvalues = new double[n];
- final double[] e = new double[n];
- for (int i = 0; i < n - 1; i++) {
- eigenvalues[i] = main[i];
- e[i] = secondary[i];
- }
- eigenvalues[n - 1] = main[n - 1];
- e[n - 1] = 0;
- // Determine the largest main and secondary value in absolute term.
- double maxAbsoluteValue = 0;
- for (int i = 0; i < n; i++) {
- if (FastMath.abs(eigenvalues[i]) > maxAbsoluteValue) {
- maxAbsoluteValue = FastMath.abs(eigenvalues[i]);
- }
- if (FastMath.abs(e[i]) > maxAbsoluteValue) {
- maxAbsoluteValue = FastMath.abs(e[i]);
- }
- }
- // Make null any main and secondary value too small to be significant
- if (maxAbsoluteValue != 0) {
- for (int i=0; i < n; i++) {
- if (FastMath.abs(eigenvalues[i]) <= Precision.EPSILON * maxAbsoluteValue) {
- eigenvalues[i] = 0;
- }
- if (FastMath.abs(e[i]) <= Precision.EPSILON * maxAbsoluteValue) {
- e[i]=0;
- }
- }
- }
- for (int j = 0; j < n; j++) {
- int its = 0;
- int m;
- do {
- for (m = j; m < n - 1; m++) {
- double delta = FastMath.abs(eigenvalues[m]) +
- FastMath.abs(eigenvalues[m + 1]);
- if (FastMath.abs(e[m]) + delta == delta) {
- break;
- }
- }
- if (m != j) {
- if (its == MAX_ITER) {
- throw new MathIllegalStateException(LocalizedCoreFormats.CONVERGENCE_FAILED,
- MAX_ITER);
- }
- its++;
- double q = (eigenvalues[j + 1] - eigenvalues[j]) / (2 * e[j]);
- double t = FastMath.sqrt(1 + q * q);
- if (q < 0.0) {
- q = eigenvalues[m] - eigenvalues[j] + e[j] / (q - t);
- } else {
- q = eigenvalues[m] - eigenvalues[j] + e[j] / (q + t);
- }
- double u = 0.0;
- double s = 1.0;
- double c = 1.0;
- int i;
- for (i = m - 1; i >= j; i--) {
- double p = s * e[i];
- double h = c * e[i];
- if (FastMath.abs(p) >= FastMath.abs(q)) {
- c = q / p;
- t = FastMath.sqrt(c * c + 1.0);
- e[i + 1] = p * t;
- s = 1.0 / t;
- c *= s;
- } else {
- s = p / q;
- t = FastMath.sqrt(s * s + 1.0);
- e[i + 1] = q * t;
- c = 1.0 / t;
- s *= c;
- }
- if (e[i + 1] == 0.0) {
- eigenvalues[i + 1] -= u;
- e[m] = 0.0;
- break;
- }
- q = eigenvalues[i + 1] - u;
- t = (eigenvalues[i] - q) * s + 2.0 * c * h;
- u = s * t;
- eigenvalues[i + 1] = q + u;
- q = c * t - h;
- for (int ia = 0; ia < n; ia++) {
- p = z[ia][i + 1];
- z[ia][i + 1] = s * z[ia][i] + c * p;
- z[ia][i] = c * z[ia][i] - s * p;
- }
- }
- if (t == 0.0 && i >= j) {
- continue;
- }
- eigenvalues[j] -= u;
- e[j] = q;
- e[m] = 0.0;
- }
- } while (m != j);
- }
- // Sort the eigen values (and vectors) in desired order
- for (int i = 0; i < n; i++) {
- int k = i;
- double p = eigenvalues[i];
- for (int j = i + 1; j < n; j++) {
- if (eigenvalues[j] > p == decreasing) {
- k = j;
- p = eigenvalues[j];
- }
- }
- if (k != i) {
- eigenvalues[k] = eigenvalues[i];
- eigenvalues[i] = p;
- for (int j = 0; j < n; j++) {
- p = z[j][i];
- z[j][i] = z[j][k];
- z[j][k] = p;
- }
- }
- }
- // Determine the largest eigen value in absolute term.
- maxAbsoluteValue = 0;
- for (int i = 0; i < n; i++) {
- if (FastMath.abs(eigenvalues[i]) > maxAbsoluteValue) {
- maxAbsoluteValue = FastMath.abs(eigenvalues[i]);
- }
- }
- // Make null any eigen value too small to be significant
- if (maxAbsoluteValue != 0.0) {
- for (int i=0; i < n; i++) {
- if (FastMath.abs(eigenvalues[i]) < Precision.EPSILON * maxAbsoluteValue) {
- eigenvalues[i] = 0;
- }
- }
- }
- eigenvectors = new ArrayRealVector[n];
- for (int i = 0; i < n; i++) {
- eigenvectors[i] = new ArrayRealVector(n);
- for (int j = 0; j < n; j++) {
- eigenvectors[i].setEntry(j, z[j][i]);
- }
- }
- }
- }