EnumeratedDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.distribution;
- import java.io.Serializable;
- import java.util.ArrayList;
- import java.util.List;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.Pair;
- import org.hipparchus.util.Precision;
- /**
- * A generic implementation of a
- * <a href="http://en.wikipedia.org/wiki/Probability_distribution#Discrete_probability_distribution">
- * discrete probability distribution (Wikipedia)</a> over a finite sample space,
- * based on an enumerated list of <value, probability> pairs.
- * <p>
- * Input probabilities must all be non-negative, but zero values are allowed and
- * their sum does not have to equal one. Constructors will normalize input
- * probabilities to make them sum to one.
- * <p>
- * The list of <value, probability> pairs does not, strictly speaking, have
- * to be a function and it can contain null values. The pmf created by the constructor
- * will combine probabilities of equal values and will treat null values as equal.
- * <p>
- * For example, if the list of pairs <"dog", 0.2>, <null, 0.1>,
- * <"pig", 0.2>, <"dog", 0.1>, <null, 0.4> is provided to the
- * constructor, the resulting pmf will assign mass of 0.5 to null, 0.3 to "dog"
- * and 0.2 to null.
- *
- * @param <T> type of the elements in the sample space.
- */
- public class EnumeratedDistribution<T> implements Serializable {
- /** Serializable UID. */
- private static final long serialVersionUID = 20123308L;
- /**
- * List of random variable values.
- */
- private final List<T> singletons;
- /**
- * Probabilities of respective random variable values. For i = 0, ..., singletons.size() - 1,
- * probability[i] is the probability that a random variable following this distribution takes
- * the value singletons[i].
- */
- private final double[] probabilities;
- /**
- * Create an enumerated distribution using the given probability mass function
- * enumeration.
- *
- * @param pmf probability mass function enumerated as a list of <T, probability>
- * pairs.
- * @throws MathIllegalArgumentException of weights includes negative, NaN or infinite values or only 0's
- */
- public EnumeratedDistribution(final List<Pair<T, Double>> pmf)
- throws MathIllegalArgumentException {
- singletons = new ArrayList<>(pmf.size());
- final double[] probs = new double[pmf.size()];
- for (int i = 0; i < pmf.size(); i++) {
- final Pair<T, Double> sample = pmf.get(i);
- singletons.add(sample.getKey());
- final double p = sample.getValue();
- probs[i] = p;
- }
- probabilities = checkAndNormalize(probs);
- }
- /**
- * For a random variable {@code X} whose values are distributed according to
- * this distribution, this method returns {@code P(X = x)}. In other words,
- * this method represents the probability mass function (PMF) for the
- * distribution.
- * <p>
- * Note that if {@code x1} and {@code x2} satisfy {@code x1.equals(x2)},
- * or both are null, then {@code probability(x1) = probability(x2)}.
- *
- * @param x the point at which the PMF is evaluated
- * @return the value of the probability mass function at {@code x}
- */
- public double probability(final T x) {
- double probability = 0;
- for (int i = 0; i < probabilities.length; i++) {
- if ((x == null && singletons.get(i) == null) ||
- (x != null && x.equals(singletons.get(i)))) {
- probability += probabilities[i];
- }
- }
- return probability;
- }
- /**
- * Return the probability mass function as a list of (value, probability) pairs.
- * <p>
- * Note that if duplicate and / or null values were provided to the constructor
- * when creating this EnumeratedDistribution, the returned list will contain these
- * values. If duplicates values exist, what is returned will not represent
- * a pmf (i.e., it is up to the caller to consolidate duplicate mass points).
- *
- * @return the probability mass function.
- */
- public List<Pair<T, Double>> getPmf() {
- final List<Pair<T, Double>> samples = new ArrayList<>(probabilities.length);
- for (int i = 0; i < probabilities.length; i++) {
- samples.add(new Pair<>(singletons.get(i), probabilities[i]));
- }
- return samples;
- }
- /**
- * Checks to make sure that weights is neither null nor empty and contains only non-negative, finite,
- * non-NaN values and if necessary normalizes it to sum to 1.
- *
- * @param weights input array to be used as the basis for the values of a PMF
- * @return a possibly rescaled copy of the array that sums to 1 and contains only valid probability values
- * @throws MathIllegalArgumentException of weights is null or empty or includes negative, NaN or
- * infinite values or only 0's
- */
- public static double[] checkAndNormalize(double[] weights) {
- if (weights == null || weights.length == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.ARRAY_ZERO_LENGTH_OR_NULL_NOT_ALLOWED);
- }
- final int len = weights.length;
- double sumWt = 0;
- boolean posWt = false;
- for (int i = 0; i < len; i++) {
- if (weights[i] < 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
- weights[i], 0);
- }
- if (weights[i] > 0) {
- posWt = true;
- }
- if (Double.isNaN(weights[i])) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NAN_ELEMENT_AT_INDEX, i);
- }
- if (Double.isInfinite(weights[i])) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.INFINITE_ARRAY_ELEMENT,
- weights[i], i);
- }
- sumWt += weights[i];
- }
- if (!posWt) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.WEIGHT_AT_LEAST_ONE_NON_ZERO);
- }
- double[] normWt;
- if (Precision.equals(sumWt, 1d, 10)) { // allow small error (10 ulps)
- normWt = weights;
- } else {
- normWt = new double[len];
- for (int i = 0; i < len; i++) {
- normWt[i] = weights[i] / sumWt;
- }
- }
- return normWt;
- }
- }