MultivariateNormalDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.distribution.multivariate;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.linear.Array2DRowRealMatrix;
- import org.hipparchus.linear.EigenDecompositionSymmetric;
- import org.hipparchus.linear.RealMatrix;
- import org.hipparchus.random.RandomGenerator;
- import org.hipparchus.random.Well19937c;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.Precision;
- /**
- * Implementation of the multivariate normal (Gaussian) distribution.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Multivariate_normal_distribution">
- * Multivariate normal distribution (Wikipedia)</a>
- * @see <a href="http://mathworld.wolfram.com/MultivariateNormalDistribution.html">
- * Multivariate normal distribution (MathWorld)</a>
- */
- public class MultivariateNormalDistribution
- extends AbstractMultivariateRealDistribution {
- /** Default singular matrix tolerance check value **/
- private static final double DEFAULT_TOLERANCE = Precision.EPSILON;
- /** Vector of means. */
- private final double[] means;
- /** Covariance matrix. */
- private final RealMatrix covarianceMatrix;
- /** The matrix inverse of the covariance matrix. */
- private final RealMatrix covarianceMatrixInverse;
- /** The determinant of the covariance matrix. */
- private final double covarianceMatrixDeterminant;
- /** Matrix used in computation of samples. */
- private final RealMatrix samplingMatrix;
- /** Inverse singular check tolerance when testing if invertable **/
- private final double singularMatrixCheckTolerance;
- /**
- * Creates a multivariate normal distribution with the given mean vector and
- * covariance matrix.<br>
- * The number of dimensions is equal to the length of the mean vector
- * and to the number of rows and columns of the covariance matrix.
- * It is frequently written as "p" in formulae.
- * <p>
- * <b>Note:</b> this constructor will implicitly create an instance of
- * {@link Well19937c} as random generator to be used for sampling only (see
- * {@link #sample()} and {@link #sample(int)}). In case no sampling is
- * needed for the created distribution, it is advised to pass {@code null}
- * as random generator via the appropriate constructors to avoid the
- * additional initialisation overhead.
- *
- * @param means Vector of means.
- * @param covariances Covariance matrix.
- * @throws MathIllegalArgumentException if the arrays length are
- * inconsistent.
- * @throws MathIllegalArgumentException if the eigenvalue decomposition cannot
- * be performed on the provided covariance matrix.
- * @throws MathIllegalArgumentException if any of the eigenvalues is
- * negative.
- */
- public MultivariateNormalDistribution(final double[] means,
- final double[][] covariances)
- throws MathIllegalArgumentException {
- this(means, covariances, DEFAULT_TOLERANCE);
- }
- /**
- * Creates a multivariate normal distribution with the given mean vector and
- * covariance matrix.<br>
- * The number of dimensions is equal to the length of the mean vector
- * and to the number of rows and columns of the covariance matrix.
- * It is frequently written as "p" in formulae.
- * <p>
- * <b>Note:</b> this constructor will implicitly create an instance of
- * {@link Well19937c} as random generator to be used for sampling only (see
- * {@link #sample()} and {@link #sample(int)}). In case no sampling is
- * needed for the created distribution, it is advised to pass {@code null}
- * as random generator via the appropriate constructors to avoid the
- * additional initialisation overhead.
- *
- * @param means Vector of means.
- * @param covariances Covariance matrix.
- * @param singularMatrixCheckTolerance Tolerance used during the singular matrix check before inversion
- * @throws MathIllegalArgumentException if the arrays length are
- * inconsistent.
- * @throws MathIllegalArgumentException if the eigenvalue decomposition cannot
- * be performed on the provided covariance matrix.
- * @throws MathIllegalArgumentException if any of the eigenvalues is
- * negative.
- */
- public MultivariateNormalDistribution(final double[] means,
- final double[][] covariances,
- final double singularMatrixCheckTolerance)
- throws MathIllegalArgumentException {
- this(new Well19937c(), means, covariances, singularMatrixCheckTolerance);
- }
- /**
- * Creates a multivariate normal distribution with the given mean vector and
- * covariance matrix.
- * <br>
- * The number of dimensions is equal to the length of the mean vector
- * and to the number of rows and columns of the covariance matrix.
- * It is frequently written as "p" in formulae.
- *
- * @param rng Random Number Generator.
- * @param means Vector of means.
- * @param covariances Covariance matrix.
- * @throws MathIllegalArgumentException if the arrays length are
- * inconsistent.
- * @throws MathIllegalArgumentException if the eigenvalue decomposition cannot
- * be performed on the provided covariance matrix.
- * @throws MathIllegalArgumentException if any of the eigenvalues is
- * negative.
- */
- public MultivariateNormalDistribution(RandomGenerator rng,
- final double[] means,
- final double[][] covariances) {
- this(rng, means, covariances, DEFAULT_TOLERANCE);
- }
- /**
- * Creates a multivariate normal distribution with the given mean vector and
- * covariance matrix.
- * <br>
- * The number of dimensions is equal to the length of the mean vector
- * and to the number of rows and columns of the covariance matrix.
- * It is frequently written as "p" in formulae.
- *
- * @param rng Random Number Generator.
- * @param means Vector of means.
- * @param covariances Covariance matrix.
- * @param singularMatrixCheckTolerance Tolerance used during the singular matrix check before inversion
- * @throws MathIllegalArgumentException if the arrays length are
- * inconsistent.
- * @throws MathIllegalArgumentException if the eigenvalue decomposition cannot
- * be performed on the provided covariance matrix.
- * @throws MathIllegalArgumentException if any of the eigenvalues is
- * negative.
- */
- public MultivariateNormalDistribution(RandomGenerator rng,
- final double[] means,
- final double[][] covariances,
- final double singularMatrixCheckTolerance)
- throws MathIllegalArgumentException {
- super(rng, means.length);
- final int dim = means.length;
- if (covariances.length != dim) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- covariances.length, dim);
- }
- for (int i = 0; i < dim; i++) {
- if (dim != covariances[i].length) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- covariances[i].length, dim);
- }
- }
- this.means = means.clone();
- this.singularMatrixCheckTolerance = singularMatrixCheckTolerance;
- covarianceMatrix = new Array2DRowRealMatrix(covariances);
- // Covariance matrix eigen decomposition.
- final EigenDecompositionSymmetric covMatDec =
- new EigenDecompositionSymmetric(covarianceMatrix, singularMatrixCheckTolerance, true);
- // Compute and store the inverse.
- covarianceMatrixInverse = covMatDec.getSolver().getInverse();
- // Compute and store the determinant.
- covarianceMatrixDeterminant = covMatDec.getDeterminant();
- // Eigenvalues of the covariance matrix.
- final double[] covMatEigenvalues = covMatDec.getEigenvalues();
- for (double covMatEigenvalue : covMatEigenvalues) {
- if (covMatEigenvalue < 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NOT_POSITIVE_DEFINITE_MATRIX);
- }
- }
- // Matrix where each column is an eigenvector of the covariance matrix.
- final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim);
- for (int v = 0; v < dim; v++) {
- final double[] evec = covMatDec.getEigenvector(v).toArray();
- covMatEigenvectors.setColumn(v, evec);
- }
- final RealMatrix tmpMatrix = covMatEigenvectors.transpose();
- // Scale each eigenvector by the square root of its eigenvalue.
- for (int row = 0; row < dim; row++) {
- final double factor = FastMath.sqrt(covMatEigenvalues[row]);
- for (int col = 0; col < dim; col++) {
- tmpMatrix.multiplyEntry(row, col, factor);
- }
- }
- samplingMatrix = covMatEigenvectors.multiply(tmpMatrix);
- }
- /**
- * Gets the mean vector.
- *
- * @return the mean vector.
- */
- public double[] getMeans() {
- return means.clone();
- }
- /**
- * Gets the covariance matrix.
- *
- * @return the covariance matrix.
- */
- public RealMatrix getCovariances() {
- return covarianceMatrix.copy();
- }
- /**
- * Gets the current setting for the tolerance check used during singular checks before inversion
- * @return tolerance
- */
- public double getSingularMatrixCheckTolerance() { return singularMatrixCheckTolerance; }
- /** {@inheritDoc} */
- @Override
- public double density(final double[] vals) throws MathIllegalArgumentException {
- final int dim = getDimension();
- if (vals.length != dim) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- vals.length, dim);
- }
- return FastMath.pow(2 * FastMath.PI, -0.5 * dim) *
- FastMath.pow(covarianceMatrixDeterminant, -0.5) *
- getExponentTerm(vals);
- }
- /**
- * Gets the square root of each element on the diagonal of the covariance
- * matrix.
- *
- * @return the standard deviations.
- */
- public double[] getStandardDeviations() {
- final int dim = getDimension();
- final double[] std = new double[dim];
- final double[][] s = covarianceMatrix.getData();
- for (int i = 0; i < dim; i++) {
- std[i] = FastMath.sqrt(s[i][i]);
- }
- return std;
- }
- /** {@inheritDoc} */
- @Override
- public double[] sample() {
- final int dim = getDimension();
- final double[] normalVals = new double[dim];
- for (int i = 0; i < dim; i++) {
- normalVals[i] = random.nextGaussian();
- }
- final double[] vals = samplingMatrix.operate(normalVals);
- for (int i = 0; i < dim; i++) {
- vals[i] += means[i];
- }
- return vals;
- }
- /**
- * Computes the term used in the exponent (see definition of the distribution).
- *
- * @param values Values at which to compute density.
- * @return the multiplication factor of density calculations.
- */
- private double getExponentTerm(final double[] values) {
- final double[] centered = new double[values.length];
- for (int i = 0; i < centered.length; i++) {
- centered[i] = values[i] - getMeans()[i];
- }
- final double[] preMultiplied = covarianceMatrixInverse.preMultiply(centered);
- double sum = 0;
- for (int i = 0; i < preMultiplied.length; i++) {
- sum += preMultiplied[i] * centered[i];
- }
- return FastMath.exp(-0.5 * sum);
- }
- }