SaddlePointExpansion.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.distribution.discrete;
- import org.hipparchus.special.Gamma;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- import org.hipparchus.util.Precision;
- /**
- * Utility class used by various distributions to accurately compute their
- * respective probability mass functions. The implementation for this class is
- * based on the Catherine Loader's <a target="_blank"
- * href="http://www.herine.net/stat/software/dbinom.html">dbinom</a> routines.
- * <p>
- * This class is not intended to be called directly.
- * <p>
- * References:
- * <ol>
- * <li>Catherine Loader (2000). "Fast and Accurate Computation of Binomial
- * Probabilities.". <a target="_blank"
- * href="http://www.herine.net/stat/papers/dbinom.pdf">
- * http://www.herine.net/stat/papers/dbinom.pdf</a></li>
- * </ol>
- */
- final class SaddlePointExpansion {
- /** 1/2 * log(2 π). */
- private static final double HALF_LOG_2_PI = 0.5 * FastMath.log(MathUtils.TWO_PI);
- /** exact Stirling expansion error for certain values. */
- private static final double[] EXACT_STIRLING_ERRORS = {
- 0.0, /* 0.0 */
- 0.1534264097200273452913848, /* 0.5 */
- 0.0810614667953272582196702, /* 1.0 */
- 0.0548141210519176538961390, /* 1.5 */
- 0.0413406959554092940938221, /* 2.0 */
- 0.03316287351993628748511048, /* 2.5 */
- 0.02767792568499833914878929, /* 3.0 */
- 0.02374616365629749597132920, /* 3.5 */
- 0.02079067210376509311152277, /* 4.0 */
- 0.01848845053267318523077934, /* 4.5 */
- 0.01664469118982119216319487, /* 5.0 */
- 0.01513497322191737887351255, /* 5.5 */
- 0.01387612882307074799874573, /* 6.0 */
- 0.01281046524292022692424986, /* 6.5 */
- 0.01189670994589177009505572, /* 7.0 */
- 0.01110455975820691732662991, /* 7.5 */
- 0.010411265261972096497478567, /* 8.0 */
- 0.009799416126158803298389475, /* 8.5 */
- 0.009255462182712732917728637, /* 9.0 */
- 0.008768700134139385462952823, /* 9.5 */
- 0.008330563433362871256469318, /* 10.0 */
- 0.007934114564314020547248100, /* 10.5 */
- 0.007573675487951840794972024, /* 11.0 */
- 0.007244554301320383179543912, /* 11.5 */
- 0.006942840107209529865664152, /* 12.0 */
- 0.006665247032707682442354394, /* 12.5 */
- 0.006408994188004207068439631, /* 13.0 */
- 0.006171712263039457647532867, /* 13.5 */
- 0.005951370112758847735624416, /* 14.0 */
- 0.005746216513010115682023589, /* 14.5 */
- 0.005554733551962801371038690 /* 15.0 */
- };
- /**
- * Default constructor.
- */
- private SaddlePointExpansion() {}
- /**
- * Compute the error of Stirling's series at the given value.
- * <p>
- * References:
- * <ol>
- * <li>Eric W. Weisstein. "Stirling's Series." From MathWorld--A Wolfram Web
- * Resource. <a target="_blank"
- * href="http://mathworld.wolfram.com/StirlingsSeries.html">
- * http://mathworld.wolfram.com/StirlingsSeries.html</a></li>
- * </ol>
- *
- * @param z the value.
- * @return the Striling's series error.
- */
- static double getStirlingError(double z) {
- if (z < 15.0) {
- double z2 = 2.0 * z;
- if (Precision.isMathematicalInteger(z2)) {
- return EXACT_STIRLING_ERRORS[(int) z2];
- } else {
- return Gamma.logGamma(z + 1.0) - (z + 0.5) * FastMath.log(z) +
- z - HALF_LOG_2_PI;
- }
- } else {
- double z2 = z * z;
- return (0.083333333333333333333 -
- (0.00277777777777777777778 -
- (0.00079365079365079365079365 -
- (0.000595238095238095238095238 -
- 0.0008417508417508417508417508 /
- z2) / z2) / z2) / z2) / z;
- }
- }
- /**
- * A part of the deviance portion of the saddle point approximation.
- * <p>
- * References:
- * <ol>
- * <li>Catherine Loader (2000). "Fast and Accurate Computation of Binomial
- * Probabilities.". <a target="_blank"
- * href="http://www.herine.net/stat/papers/dbinom.pdf">
- * http://www.herine.net/stat/papers/dbinom.pdf</a></li>
- * </ol>
- *
- * @param x the x value.
- * @param mu the average.
- * @return a part of the deviance.
- */
- static double getDeviancePart(double x, double mu) {
- if (FastMath.abs(x - mu) < 0.1 * (x + mu)) {
- double d = x - mu;
- double v = d / (x + mu);
- double s1 = v * d;
- double s = Double.NaN;
- double ej = 2.0 * x * v;
- v *= v;
- int j = 1;
- while (s1 != s) {
- s = s1;
- ej *= v;
- s1 = s + ej / ((j * 2) + 1);
- ++j;
- }
- return s1;
- } else {
- return x * FastMath.log(x / mu) + mu - x;
- }
- }
- /**
- * Compute the logarithm of the PMF for a binomial distribution
- * using the saddle point expansion.
- *
- * @param x the value at which the probability is evaluated.
- * @param n the number of trials.
- * @param p the probability of success.
- * @param q the probability of failure (1 - p).
- * @return log(p(x)).
- */
- static double logBinomialProbability(int x, int n, double p, double q) {
- if (n == 0) {
- return x == 0 ? 0d : Double.NEGATIVE_INFINITY;
- }
- if (x == 0) {
- if (p < 0.1) {
- return -getDeviancePart(n, n * q) - n * p;
- } else {
- return n * FastMath.log(q);
- }
- } else if (x == n) {
- if (q < 0.1) {
- return -getDeviancePart(n, n * p) - n * q;
- } else {
- return n * FastMath.log(p);
- }
- } else {
- double ret = getStirlingError(n) - getStirlingError(x) -
- getStirlingError(n - x) - getDeviancePart(x, n * p) -
- getDeviancePart(n - x, n * q);
- double f = (MathUtils.TWO_PI * x * (n - x)) / n;
- ret = -0.5 * FastMath.log(f) + ret;
- return ret;
- }
- }
- }