SaddlePointExpansion.java

  1. /*
  2.  * Licensed to the Apache Software Foundation (ASF) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * The ASF licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *      https://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */

  17. /*
  18.  * This is not the original file distributed by the Apache Software Foundation
  19.  * It has been modified by the Hipparchus project
  20.  */
  21. package org.hipparchus.distribution.discrete;

  22. import org.hipparchus.special.Gamma;
  23. import org.hipparchus.util.FastMath;
  24. import org.hipparchus.util.MathUtils;
  25. import org.hipparchus.util.Precision;

  26. /**
  27.  * Utility class used by various distributions to accurately compute their
  28.  * respective probability mass functions. The implementation for this class is
  29.  * based on the Catherine Loader's <a target="_blank"
  30.  * href="http://www.herine.net/stat/software/dbinom.html">dbinom</a> routines.
  31.  * <p>
  32.  * This class is not intended to be called directly.
  33.  * <p>
  34.  * References:
  35.  * <ol>
  36.  * <li>Catherine Loader (2000). "Fast and Accurate Computation of Binomial
  37.  * Probabilities.". <a target="_blank"
  38.  * href="http://www.herine.net/stat/papers/dbinom.pdf">
  39.  * http://www.herine.net/stat/papers/dbinom.pdf</a></li>
  40.  * </ol>
  41.  */
  42. final class SaddlePointExpansion {

  43.     /** 1/2 * log(2 &#960;). */
  44.     private static final double HALF_LOG_2_PI = 0.5 * FastMath.log(MathUtils.TWO_PI);

  45.     /** exact Stirling expansion error for certain values. */
  46.     private static final double[] EXACT_STIRLING_ERRORS = {
  47.         0.0,                           /* 0.0 */
  48.         0.1534264097200273452913848,   /* 0.5 */
  49.         0.0810614667953272582196702,   /* 1.0 */
  50.         0.0548141210519176538961390,   /* 1.5 */
  51.         0.0413406959554092940938221,   /* 2.0 */
  52.         0.03316287351993628748511048,  /* 2.5 */
  53.         0.02767792568499833914878929,  /* 3.0 */
  54.         0.02374616365629749597132920,  /* 3.5 */
  55.         0.02079067210376509311152277,  /* 4.0 */
  56.         0.01848845053267318523077934,  /* 4.5 */
  57.         0.01664469118982119216319487,  /* 5.0 */
  58.         0.01513497322191737887351255,  /* 5.5 */
  59.         0.01387612882307074799874573,  /* 6.0 */
  60.         0.01281046524292022692424986,  /* 6.5 */
  61.         0.01189670994589177009505572,  /* 7.0 */
  62.         0.01110455975820691732662991,  /* 7.5 */
  63.         0.010411265261972096497478567, /* 8.0 */
  64.         0.009799416126158803298389475, /* 8.5 */
  65.         0.009255462182712732917728637, /* 9.0 */
  66.         0.008768700134139385462952823, /* 9.5 */
  67.         0.008330563433362871256469318, /* 10.0 */
  68.         0.007934114564314020547248100, /* 10.5 */
  69.         0.007573675487951840794972024, /* 11.0 */
  70.         0.007244554301320383179543912, /* 11.5 */
  71.         0.006942840107209529865664152, /* 12.0 */
  72.         0.006665247032707682442354394, /* 12.5 */
  73.         0.006408994188004207068439631, /* 13.0 */
  74.         0.006171712263039457647532867, /* 13.5 */
  75.         0.005951370112758847735624416, /* 14.0 */
  76.         0.005746216513010115682023589, /* 14.5 */
  77.         0.005554733551962801371038690  /* 15.0 */
  78.     };

  79.     /**
  80.      * Default constructor.
  81.      */
  82.     private SaddlePointExpansion() {}

  83.     /**
  84.      * Compute the error of Stirling's series at the given value.
  85.      * <p>
  86.      * References:
  87.      * <ol>
  88.      * <li>Eric W. Weisstein. "Stirling's Series." From MathWorld--A Wolfram Web
  89.      * Resource. <a target="_blank"
  90.      * href="http://mathworld.wolfram.com/StirlingsSeries.html">
  91.      * http://mathworld.wolfram.com/StirlingsSeries.html</a></li>
  92.      * </ol>
  93.      *
  94.      * @param z the value.
  95.      * @return the Striling's series error.
  96.      */
  97.     static double getStirlingError(double z) {
  98.         if (z < 15.0) {
  99.             double z2 = 2.0 * z;
  100.             if (Precision.isMathematicalInteger(z2)) {
  101.                 return EXACT_STIRLING_ERRORS[(int) z2];
  102.             } else {
  103.                 return Gamma.logGamma(z + 1.0) - (z + 0.5) * FastMath.log(z) +
  104.                        z - HALF_LOG_2_PI;
  105.             }
  106.         } else {
  107.             double z2 = z * z;
  108.             return (0.083333333333333333333 -
  109.                            (0.00277777777777777777778 -
  110.                              (0.00079365079365079365079365 -
  111.                                (0.000595238095238095238095238 -
  112.                                  0.0008417508417508417508417508 /
  113.                                    z2) / z2) / z2) / z2) / z;
  114.         }
  115.     }

  116.     /**
  117.      * A part of the deviance portion of the saddle point approximation.
  118.      * <p>
  119.      * References:
  120.      * <ol>
  121.      * <li>Catherine Loader (2000). "Fast and Accurate Computation of Binomial
  122.      * Probabilities.". <a target="_blank"
  123.      * href="http://www.herine.net/stat/papers/dbinom.pdf">
  124.      * http://www.herine.net/stat/papers/dbinom.pdf</a></li>
  125.      * </ol>
  126.      *
  127.      * @param x the x value.
  128.      * @param mu the average.
  129.      * @return a part of the deviance.
  130.      */
  131.     static double getDeviancePart(double x, double mu) {
  132.         if (FastMath.abs(x - mu) < 0.1 * (x + mu)) {
  133.             double d = x - mu;
  134.             double v = d / (x + mu);
  135.             double s1 = v * d;
  136.             double s = Double.NaN;
  137.             double ej = 2.0 * x * v;
  138.             v *= v;
  139.             int j = 1;
  140.             while (s1 != s) {
  141.                 s = s1;
  142.                 ej *= v;
  143.                 s1 = s + ej / ((j * 2) + 1);
  144.                 ++j;
  145.             }
  146.             return s1;
  147.         } else {
  148.             return x * FastMath.log(x / mu) + mu - x;
  149.         }
  150.     }

  151.     /**
  152.      * Compute the logarithm of the PMF for a binomial distribution
  153.      * using the saddle point expansion.
  154.      *
  155.      * @param x the value at which the probability is evaluated.
  156.      * @param n the number of trials.
  157.      * @param p the probability of success.
  158.      * @param q the probability of failure (1 - p).
  159.      * @return log(p(x)).
  160.      */
  161.     static double logBinomialProbability(int x, int n, double p, double q) {
  162.         if (n == 0) {
  163.             return x == 0 ? 0d : Double.NEGATIVE_INFINITY;
  164.         }
  165.         if (x == 0) {
  166.             if (p < 0.1) {
  167.                 return -getDeviancePart(n, n * q) - n * p;
  168.             } else {
  169.                 return n * FastMath.log(q);
  170.             }
  171.         } else if (x == n) {
  172.             if (q < 0.1) {
  173.                 return -getDeviancePart(n, n * p) - n * q;
  174.             } else {
  175.                 return n * FastMath.log(p);
  176.             }
  177.         } else {
  178.             double ret = getStirlingError(n) - getStirlingError(x) -
  179.                          getStirlingError(n - x) - getDeviancePart(x, n * p) -
  180.                          getDeviancePart(n - x, n * q);
  181.             double f = (MathUtils.TWO_PI * x * (n - x)) / n;
  182.             ret = -0.5 * FastMath.log(f) + ret;
  183.             return ret;
  184.         }
  185.     }
  186. }