PascalDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.distribution.discrete;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.special.Beta;
- import org.hipparchus.util.CombinatoricsUtils;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * Implementation of the Pascal distribution.
- * <p>
- * The Pascal distribution is a special case of the Negative Binomial distribution
- * where the number of successes parameter is an integer.
- * <p>
- * There are various ways to express the probability mass and distribution
- * functions for the Pascal distribution. The present implementation represents
- * the distribution of the number of failures before {@code r} successes occur.
- * This is the convention adopted in e.g.
- * <a href="http://mathworld.wolfram.com/NegativeBinomialDistribution.html">MathWorld</a>,
- * but <em>not</em> in
- * <a href="http://en.wikipedia.org/wiki/Negative_binomial_distribution">Wikipedia</a>.
- * <p>
- * For a random variable {@code X} whose values are distributed according to this
- * distribution, the probability mass function is given by<br>
- * {@code P(X = k) = C(k + r - 1, r - 1) * p^r * (1 - p)^k,}<br>
- * where {@code r} is the number of successes, {@code p} is the probability of
- * success, and {@code X} is the total number of failures. {@code C(n, k)} is
- * the binomial coefficient ({@code n} choose {@code k}). The mean and variance
- * of {@code X} are<br>
- * {@code E(X) = (1 - p) * r / p, var(X) = (1 - p) * r / p^2.}<br>
- * Finally, the cumulative distribution function is given by<br>
- * {@code P(X <= k) = I(p, r, k + 1)},
- * where I is the regularized incomplete Beta function.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Negative_binomial_distribution">
- * Negative binomial distribution (Wikipedia)</a>
- * @see <a href="http://mathworld.wolfram.com/NegativeBinomialDistribution.html">
- * Negative binomial distribution (MathWorld)</a>
- */
- public class PascalDistribution extends AbstractIntegerDistribution {
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20160320L;
- /** The number of successes. */
- private final int numberOfSuccesses;
- /** The probability of success. */
- private final double probabilityOfSuccess;
- /** The value of {@code log(p)}, where {@code p} is the probability of success,
- * stored for faster computation. */
- private final double logProbabilityOfSuccess;
- /** The value of {@code log(1-p)}, where {@code p} is the probability of success,
- * stored for faster computation. */
- private final double log1mProbabilityOfSuccess;
- /**
- * Create a Pascal distribution with the given number of successes and
- * probability of success.
- *
- * @param r Number of successes.
- * @param p Probability of success.
- * @throws MathIllegalArgumentException if the number of successes is not positive
- * @throws MathIllegalArgumentException if the probability of success is not in the
- * range {@code [0, 1]}.
- */
- public PascalDistribution(int r, double p)
- throws MathIllegalArgumentException {
- if (r <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_SUCCESSES,
- r);
- }
- MathUtils.checkRangeInclusive(p, 0, 1);
- numberOfSuccesses = r;
- probabilityOfSuccess = p;
- logProbabilityOfSuccess = FastMath.log(p);
- log1mProbabilityOfSuccess = FastMath.log1p(-p);
- }
- /**
- * Access the number of successes for this distribution.
- *
- * @return the number of successes.
- */
- public int getNumberOfSuccesses() {
- return numberOfSuccesses;
- }
- /**
- * Access the probability of success for this distribution.
- *
- * @return the probability of success.
- */
- public double getProbabilityOfSuccess() {
- return probabilityOfSuccess;
- }
- /** {@inheritDoc} */
- @Override
- public double probability(int x) {
- double ret;
- if (x < 0) {
- ret = 0.0;
- } else {
- ret = CombinatoricsUtils.binomialCoefficientDouble(x +
- numberOfSuccesses - 1, numberOfSuccesses - 1) *
- FastMath.pow(probabilityOfSuccess, numberOfSuccesses) *
- FastMath.pow(1.0 - probabilityOfSuccess, x);
- }
- return ret;
- }
- /** {@inheritDoc} */
- @Override
- public double logProbability(int x) {
- double ret;
- if (x < 0) {
- ret = Double.NEGATIVE_INFINITY;
- } else {
- ret = CombinatoricsUtils.binomialCoefficientLog(x +
- numberOfSuccesses - 1, numberOfSuccesses - 1) +
- logProbabilityOfSuccess * numberOfSuccesses +
- log1mProbabilityOfSuccess * x;
- }
- return ret;
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(int x) {
- double ret;
- if (x < 0) {
- ret = 0.0;
- } else {
- ret = Beta.regularizedBeta(probabilityOfSuccess,
- numberOfSuccesses, x + 1.0);
- }
- return ret;
- }
- /**
- * {@inheritDoc}
- *
- * For number of successes {@code r} and probability of success {@code p},
- * the mean is {@code r * (1 - p) / p}.
- */
- @Override
- public double getNumericalMean() {
- final double p = getProbabilityOfSuccess();
- final double r = getNumberOfSuccesses();
- return (r * (1 - p)) / p;
- }
- /**
- * {@inheritDoc}
- *
- * For number of successes {@code r} and probability of success {@code p},
- * the variance is {@code r * (1 - p) / p^2}.
- */
- @Override
- public double getNumericalVariance() {
- final double p = getProbabilityOfSuccess();
- final double r = getNumberOfSuccesses();
- return r * (1 - p) / (p * p);
- }
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 no matter the parameters.
- *
- * @return lower bound of the support (always 0)
- */
- @Override
- public int getSupportLowerBound() {
- return 0;
- }
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always positive infinity no matter the
- * parameters. Positive infinity is symbolized by {@code Integer.MAX_VALUE}.
- *
- * @return upper bound of the support (always {@code Integer.MAX_VALUE}
- * for positive infinity)
- */
- @Override
- public int getSupportUpperBound() {
- return Integer.MAX_VALUE;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- @Override
- public boolean isSupportConnected() {
- return true;
- }
- }