GeometricDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.distribution.discrete;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * Implementation of the geometric distribution.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Geometric_distribution">Geometric distribution (Wikipedia)</a>
- * @see <a href="http://mathworld.wolfram.com/GeometricDistribution.html">Geometric Distribution (MathWorld)</a>
- */
- public class GeometricDistribution extends AbstractIntegerDistribution {
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20130507L;
- /** The probability of success. */
- private final double probabilityOfSuccess;
- /** {@code log(p)} where p is the probability of success. */
- private final double logProbabilityOfSuccess;
- /** {@code log(1 - p)} where p is the probability of success. */
- private final double log1mProbabilityOfSuccess;
- /**
- * Create a geometric distribution with the given probability of success.
- *
- * @param p probability of success.
- * @throws MathIllegalArgumentException if {@code p <= 0} or {@code p > 1}.
- */
- public GeometricDistribution(double p)
- throws MathIllegalArgumentException {
- if (p <= 0 || p > 1) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.OUT_OF_RANGE_LEFT, p, 0, 1);
- }
- probabilityOfSuccess = p;
- logProbabilityOfSuccess = FastMath.log(p);
- log1mProbabilityOfSuccess = FastMath.log1p(-p);
- }
- /**
- * Access the probability of success for this distribution.
- *
- * @return the probability of success.
- */
- public double getProbabilityOfSuccess() {
- return probabilityOfSuccess;
- }
- /** {@inheritDoc} */
- @Override
- public double probability(int x) {
- if (x < 0) {
- return 0.0;
- } else {
- return FastMath.exp(log1mProbabilityOfSuccess * x) * probabilityOfSuccess;
- }
- }
- /** {@inheritDoc} */
- @Override
- public double logProbability(int x) {
- if (x < 0) {
- return Double.NEGATIVE_INFINITY;
- } else {
- return x * log1mProbabilityOfSuccess + logProbabilityOfSuccess;
- }
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(int x) {
- if (x < 0) {
- return 0.0;
- } else {
- return -FastMath.expm1(log1mProbabilityOfSuccess * (x + 1));
- }
- }
- /**
- * {@inheritDoc}
- *
- * For probability parameter {@code p}, the mean is {@code (1 - p) / p}.
- */
- @Override
- public double getNumericalMean() {
- return (1 - probabilityOfSuccess) / probabilityOfSuccess;
- }
- /**
- * {@inheritDoc}
- *
- * For probability parameter {@code p}, the variance is
- * {@code (1 - p) / (p * p)}.
- */
- @Override
- public double getNumericalVariance() {
- return (1 - probabilityOfSuccess) / (probabilityOfSuccess * probabilityOfSuccess);
- }
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0.
- *
- * @return lower bound of the support (always 0)
- */
- @Override
- public int getSupportLowerBound() {
- return 0;
- }
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is infinite (which we approximate as
- * {@code Integer.MAX_VALUE}).
- *
- * @return upper bound of the support (always Integer.MAX_VALUE)
- */
- @Override
- public int getSupportUpperBound() {
- return Integer.MAX_VALUE;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- @Override
- public boolean isSupportConnected() {
- return true;
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public int inverseCumulativeProbability(double p) throws MathIllegalArgumentException {
- MathUtils.checkRangeInclusive(p, 0, 1);
- if (p == 1) {
- return Integer.MAX_VALUE;
- }
- if (p == 0) {
- return 0;
- }
- return Math.max(0, (int) Math.ceil(FastMath.log1p(-p)/log1mProbabilityOfSuccess-1));
- }
- }