BinomialDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.distribution.discrete;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.special.Beta;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * Implementation of the binomial distribution.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Binomial_distribution">Binomial distribution (Wikipedia)</a>
- * @see <a href="http://mathworld.wolfram.com/BinomialDistribution.html">Binomial Distribution (MathWorld)</a>
- */
- public class BinomialDistribution extends AbstractIntegerDistribution {
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20160320L;
- /** The number of trials. */
- private final int numberOfTrials;
- /** The probability of success. */
- private final double probabilityOfSuccess;
- /**
- * Create a binomial distribution with the given number of trials and
- * probability of success.
- *
- * @param trials Number of trials.
- * @param p Probability of success.
- * @throws MathIllegalArgumentException if {@code trials < 0}.
- * @throws MathIllegalArgumentException if {@code p < 0} or {@code p > 1}.
- */
- public BinomialDistribution(int trials, double p)
- throws MathIllegalArgumentException {
- if (trials < 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_TRIALS,
- trials);
- }
- MathUtils.checkRangeInclusive(p, 0, 1);
- probabilityOfSuccess = p;
- numberOfTrials = trials;
- }
- /**
- * Access the number of trials for this distribution.
- *
- * @return the number of trials.
- */
- public int getNumberOfTrials() {
- return numberOfTrials;
- }
- /**
- * Access the probability of success for this distribution.
- *
- * @return the probability of success.
- */
- public double getProbabilityOfSuccess() {
- return probabilityOfSuccess;
- }
- /** {@inheritDoc} */
- @Override
- public double probability(int x) {
- final double logProbability = logProbability(x);
- return logProbability == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logProbability);
- }
- /** {@inheritDoc} **/
- @Override
- public double logProbability(int x) {
- if (numberOfTrials == 0) {
- return (x == 0) ? 0. : Double.NEGATIVE_INFINITY;
- }
- double ret;
- if (x < 0 || x > numberOfTrials) {
- ret = Double.NEGATIVE_INFINITY;
- } else {
- ret = SaddlePointExpansion.logBinomialProbability(x,
- numberOfTrials, probabilityOfSuccess,
- 1.0 - probabilityOfSuccess);
- }
- return ret;
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(int x) {
- double ret;
- if (x < 0) {
- ret = 0.0;
- } else if (x >= numberOfTrials) {
- ret = 1.0;
- } else {
- ret = 1.0 - Beta.regularizedBeta(probabilityOfSuccess,
- x + 1.0, numberOfTrials - x);
- }
- return ret;
- }
- /**
- * {@inheritDoc}
- *
- * For {@code n} trials and probability parameter {@code p}, the mean is
- * {@code n * p}.
- */
- @Override
- public double getNumericalMean() {
- return numberOfTrials * probabilityOfSuccess;
- }
- /**
- * {@inheritDoc}
- *
- * For {@code n} trials and probability parameter {@code p}, the variance is
- * {@code n * p * (1 - p)}.
- */
- @Override
- public double getNumericalVariance() {
- final double p = probabilityOfSuccess;
- return numberOfTrials * p * (1 - p);
- }
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 except for the probability
- * parameter {@code p = 1}.
- *
- * @return lower bound of the support (0 or the number of trials)
- */
- @Override
- public int getSupportLowerBound() {
- return probabilityOfSuccess < 1.0 ? 0 : numberOfTrials;
- }
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is the number of trials except for the
- * probability parameter {@code p = 0}.
- *
- * @return upper bound of the support (number of trials or 0)
- */
- @Override
- public int getSupportUpperBound() {
- return probabilityOfSuccess > 0.0 ? numberOfTrials : 0;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- @Override
- public boolean isSupportConnected() {
- return true;
- }
- }