WeibullDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.distribution.continuous;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.special.Gamma;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * Implementation of the Weibull distribution. This implementation uses the
- * two parameter form of the distribution defined by
- * <a href="http://mathworld.wolfram.com/WeibullDistribution.html">
- * Weibull Distribution</a>, equations (1) and (2).
- *
- * @see <a href="http://en.wikipedia.org/wiki/Weibull_distribution">Weibull distribution (Wikipedia)</a>
- * @see <a href="http://mathworld.wolfram.com/WeibullDistribution.html">Weibull distribution (MathWorld)</a>
- */
- public class WeibullDistribution extends AbstractRealDistribution {
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20160320L;
- /** The shape parameter. */
- private final double shape;
- /** The scale parameter. */
- private final double scale;
- /**
- * Create a Weibull distribution with the given shape and scale.
- *
- * @param alpha Shape parameter.
- * @param beta Scale parameter.
- * @throws MathIllegalArgumentException if {@code alpha <= 0} or {@code beta <= 0}.
- */
- public WeibullDistribution(double alpha, double beta)
- throws MathIllegalArgumentException {
- if (alpha <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.SHAPE,
- alpha);
- }
- if (beta <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.SCALE,
- beta);
- }
- scale = beta;
- shape = alpha;
- }
- /**
- * Access the shape parameter, {@code alpha}.
- *
- * @return the shape parameter, {@code alpha}.
- */
- public double getShape() {
- return shape;
- }
- /**
- * Access the scale parameter, {@code beta}.
- *
- * @return the scale parameter, {@code beta}.
- */
- public double getScale() {
- return scale;
- }
- /** {@inheritDoc} */
- @Override
- public double density(double x) {
- if (x < 0) {
- return 0;
- }
- final double xscale = x / scale;
- final double xscalepow = FastMath.pow(xscale, shape - 1);
- /*
- * FastMath.pow(x / scale, shape) =
- * FastMath.pow(xscale, shape) =
- * FastMath.pow(xscale, shape - 1) * xscale
- */
- final double xscalepowshape = xscalepow * xscale;
- return (shape / scale) * xscalepow * FastMath.exp(-xscalepowshape);
- }
- /** {@inheritDoc} */
- @Override
- public double logDensity(double x) {
- if (x < 0) {
- return Double.NEGATIVE_INFINITY;
- }
- final double xscale = x / scale;
- final double logxscalepow = FastMath.log(xscale) * (shape - 1);
- /*
- * FastMath.pow(x / scale, shape) =
- * FastMath.pow(xscale, shape) =
- * FastMath.pow(xscale, shape - 1) * xscale
- */
- final double xscalepowshape = FastMath.exp(logxscalepow) * xscale;
- return FastMath.log(shape / scale) + logxscalepow - xscalepowshape;
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- double ret;
- if (x <= 0.0) {
- ret = 0.0;
- } else {
- ret = 1.0 - FastMath.exp(-FastMath.pow(x / scale, shape));
- }
- return ret;
- }
- /**
- * {@inheritDoc}
- *
- * Returns {@code 0} when {@code p == 0} and
- * {@code Double.POSITIVE_INFINITY} when {@code p == 1}.
- */
- @Override
- public double inverseCumulativeProbability(double p) {
- MathUtils.checkRangeInclusive(p, 0, 1);
- double ret;
- if (p == 0) {
- ret = 0.0;
- } else if (p == 1) {
- ret = Double.POSITIVE_INFINITY;
- } else {
- ret = scale * FastMath.pow(-FastMath.log1p(-p), 1.0 / shape);
- }
- return ret;
- }
- /**
- * {@inheritDoc}
- *
- * The mean is {@code scale * Gamma(1 + (1 / shape))}, where {@code Gamma()}
- * is the Gamma-function.
- */
- @Override
- public double getNumericalMean() {
- final double sh = getShape();
- final double sc = getScale();
- return sc * FastMath.exp(Gamma.logGamma(1 + (1 / sh)));
- }
- /**
- * {@inheritDoc}
- *
- * The variance is {@code scale^2 * Gamma(1 + (2 / shape)) - mean^2}
- * where {@code Gamma()} is the Gamma-function.
- */
- @Override
- public double getNumericalVariance() {
- final double sh = getShape();
- final double sc = getScale();
- final double mn = getNumericalMean();
- return (sc * sc) * FastMath.exp(Gamma.logGamma(1 + (2 / sh))) -
- (mn * mn);
- }
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 no matter the parameters.
- *
- * @return lower bound of the support (always 0)
- */
- @Override
- public double getSupportLowerBound() {
- return 0;
- }
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always positive infinity
- * no matter the parameters.
- *
- * @return upper bound of the support (always
- * {@code Double.POSITIVE_INFINITY})
- */
- @Override
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- @Override
- public boolean isSupportConnected() {
- return true;
- }
- }