TDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.distribution.continuous;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.special.Beta;
- import org.hipparchus.special.Gamma;
- import org.hipparchus.util.FastMath;
- /**
- * Implementation of Student's t-distribution.
- */
- public class TDistribution extends AbstractRealDistribution {
- /** Serializable version identifier */
- private static final long serialVersionUID = 20160320L;
- /** The degrees of freedom. */
- private final double degreesOfFreedom;
- /** Static computation factor based on degreesOfFreedom. */
- private final double factor;
- /**
- * Create a t distribution using the given degrees of freedom.
- *
- * @param degreesOfFreedom Degrees of freedom.
- * @throws MathIllegalArgumentException if {@code degreesOfFreedom <= 0}
- */
- public TDistribution(double degreesOfFreedom)
- throws MathIllegalArgumentException {
- this(degreesOfFreedom, DEFAULT_SOLVER_ABSOLUTE_ACCURACY);
- }
- /**
- * Create a t distribution using the given degrees of freedom and the
- * specified inverse cumulative probability absolute accuracy.
- *
- * @param degreesOfFreedom Degrees of freedom.
- * @param inverseCumAccuracy the maximum absolute error in inverse
- * cumulative probability estimates
- * (defaults to {@link #DEFAULT_SOLVER_ABSOLUTE_ACCURACY}).
- * @throws MathIllegalArgumentException if {@code degreesOfFreedom <= 0}
- */
- public TDistribution(double degreesOfFreedom, double inverseCumAccuracy)
- throws MathIllegalArgumentException {
- super(inverseCumAccuracy);
- if (degreesOfFreedom <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DEGREES_OF_FREEDOM,
- degreesOfFreedom);
- }
- this.degreesOfFreedom = degreesOfFreedom;
- final double n = degreesOfFreedom;
- final double nPlus1Over2 = (n + 1) / 2;
- factor = Gamma.logGamma(nPlus1Over2) -
- 0.5 * (FastMath.log(FastMath.PI) + FastMath.log(n)) -
- Gamma.logGamma(n / 2);
- }
- /**
- * Access the degrees of freedom.
- *
- * @return the degrees of freedom.
- */
- public double getDegreesOfFreedom() {
- return degreesOfFreedom;
- }
- /** {@inheritDoc} */
- @Override
- public double density(double x) {
- return FastMath.exp(logDensity(x));
- }
- /** {@inheritDoc} */
- @Override
- public double logDensity(double x) {
- final double n = degreesOfFreedom;
- final double nPlus1Over2 = (n + 1) / 2;
- return factor - nPlus1Over2 * FastMath.log(1 + x * x / n);
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- double ret;
- if (x == 0) {
- ret = 0.5;
- } else {
- double t =
- Beta.regularizedBeta(
- degreesOfFreedom / (degreesOfFreedom + (x * x)),
- 0.5 * degreesOfFreedom,
- 0.5);
- if (x < 0.0) {
- ret = 0.5 * t;
- } else {
- ret = 1.0 - 0.5 * t;
- }
- }
- return ret;
- }
- /**
- * {@inheritDoc}
- *
- * For degrees of freedom parameter {@code df}, the mean is
- * <ul>
- * <li>if {@code df > 1} then {@code 0},</li>
- * <li>else undefined ({@code Double.NaN}).</li>
- * </ul>
- */
- @Override
- public double getNumericalMean() {
- final double df = getDegreesOfFreedom();
- if (df > 1) {
- return 0;
- }
- return Double.NaN;
- }
- /**
- * {@inheritDoc}
- *
- * For degrees of freedom parameter {@code df}, the variance is
- * <ul>
- * <li>if {@code df > 2} then {@code df / (df - 2)},</li>
- * <li>if {@code 1 < df <= 2} then positive infinity
- * ({@code Double.POSITIVE_INFINITY}),</li>
- * <li>else undefined ({@code Double.NaN}).</li>
- * </ul>
- */
- @Override
- public double getNumericalVariance() {
- final double df = getDegreesOfFreedom();
- if (df > 2) {
- return df / (df - 2);
- }
- if (df > 1 && df <= 2) {
- return Double.POSITIVE_INFINITY;
- }
- return Double.NaN;
- }
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always negative infinity no matter the
- * parameters.
- *
- * @return lower bound of the support (always
- * {@code Double.NEGATIVE_INFINITY})
- */
- @Override
- public double getSupportLowerBound() {
- return Double.NEGATIVE_INFINITY;
- }
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always positive infinity no matter the
- * parameters.
- *
- * @return upper bound of the support (always
- * {@code Double.POSITIVE_INFINITY})
- */
- @Override
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- @Override
- public boolean isSupportConnected() {
- return true;
- }
- }