NormalDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.distribution.continuous;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.special.Erf;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * Implementation of the normal (gaussian) distribution.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Normal_distribution">Normal distribution (Wikipedia)</a>
- * @see <a href="http://mathworld.wolfram.com/NormalDistribution.html">Normal distribution (MathWorld)</a>
- */
- public class NormalDistribution extends AbstractRealDistribution {
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20160320L;
- /** √(2) */
- private static final double SQRT2 = FastMath.sqrt(2.0);
- /** Mean of this distribution. */
- private final double mean;
- /** Standard deviation of this distribution. */
- private final double standardDeviation;
- /** The value of {@code log(sd) + 0.5*log(2*pi)} stored for faster computation. */
- private final double logStandardDeviationPlusHalfLog2Pi;
- /**
- * Create a normal distribution with mean equal to zero and standard
- * deviation equal to one.
- */
- public NormalDistribution() {
- this(0, 1);
- }
- /**
- * Create a normal distribution using the given mean, standard deviation.
- *
- * @param mean Mean for this distribution.
- * @param sd Standard deviation for this distribution.
- * @throws MathIllegalArgumentException if {@code sd <= 0}.
- */
- public NormalDistribution(double mean, double sd)
- throws MathIllegalArgumentException {
- if (sd <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.STANDARD_DEVIATION, sd);
- }
- this.mean = mean;
- this.standardDeviation = sd;
- this.logStandardDeviationPlusHalfLog2Pi =
- FastMath.log(sd) + 0.5 * FastMath.log(2 * FastMath.PI);
- }
- /**
- * Access the mean.
- *
- * @return the mean for this distribution.
- */
- public double getMean() {
- return mean;
- }
- /**
- * Access the standard deviation.
- *
- * @return the standard deviation for this distribution.
- */
- public double getStandardDeviation() {
- return standardDeviation;
- }
- /** {@inheritDoc} */
- @Override
- public double density(double x) {
- return FastMath.exp(logDensity(x));
- }
- /** {@inheritDoc} */
- @Override
- public double logDensity(double x) {
- final double x0 = x - mean;
- final double x1 = x0 / standardDeviation;
- return -0.5 * x1 * x1 - logStandardDeviationPlusHalfLog2Pi;
- }
- /**
- * {@inheritDoc}
- *
- * If {@code x} is more than 40 standard deviations from the mean, 0 or 1
- * is returned, as in these cases the actual value is within
- * {@code Double.MIN_VALUE} of 0 or 1.
- */
- @Override
- public double cumulativeProbability(double x) {
- final double dev = x - mean;
- if (FastMath.abs(dev) > 40 * standardDeviation) {
- return dev < 0 ? 0.0d : 1.0d;
- }
- return 0.5 * Erf.erfc(-dev / (standardDeviation * SQRT2));
- }
- /** {@inheritDoc} */
- @Override
- public double inverseCumulativeProbability(final double p) throws MathIllegalArgumentException {
- MathUtils.checkRangeInclusive(p, 0, 1);
- return mean + standardDeviation * SQRT2 * Erf.erfInv(2 * p - 1);
- }
- /** {@inheritDoc} */
- @Override
- public double probability(double x0,
- double x1)
- throws MathIllegalArgumentException {
- if (x0 > x1) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT,
- x0, x1, true);
- }
- final double denom = standardDeviation * SQRT2;
- final double v0 = (x0 - mean) / denom;
- final double v1 = (x1 - mean) / denom;
- return 0.5 * Erf.erf(v0, v1);
- }
- /**
- * {@inheritDoc}
- *
- * For mean parameter {@code mu}, the mean is {@code mu}.
- */
- @Override
- public double getNumericalMean() {
- return getMean();
- }
- /**
- * {@inheritDoc}
- *
- * For standard deviation parameter {@code s}, the variance is {@code s^2}.
- */
- @Override
- public double getNumericalVariance() {
- final double s = getStandardDeviation();
- return s * s;
- }
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always negative infinity
- * no matter the parameters.
- *
- * @return lower bound of the support (always
- * {@code Double.NEGATIVE_INFINITY})
- */
- @Override
- public double getSupportLowerBound() {
- return Double.NEGATIVE_INFINITY;
- }
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always positive infinity
- * no matter the parameters.
- *
- * @return upper bound of the support (always
- * {@code Double.POSITIVE_INFINITY})
- */
- @Override
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- @Override
- public boolean isSupportConnected() {
- return true;
- }
- }