ExponentialDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.distribution.continuous;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * Implementation of the exponential distribution.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Exponential_distribution">Exponential distribution (Wikipedia)</a>
- * @see <a href="http://mathworld.wolfram.com/ExponentialDistribution.html">Exponential distribution (MathWorld)</a>
- */
- public class ExponentialDistribution extends AbstractRealDistribution {
- /** Serializable version identifier */
- private static final long serialVersionUID = 20160320L;
- /** The mean of this distribution. */
- private final double mean;
- /** The logarithm of the mean, stored to reduce computing time. **/
- private final double logMean;
- /**
- * Create an exponential distribution with the given mean.
- *
- * @param mean Mean of this distribution.
- * @throws MathIllegalArgumentException if {@code mean <= 0}.
- */
- public ExponentialDistribution(double mean)
- throws MathIllegalArgumentException {
- if (mean <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.MEAN, mean);
- }
- this.mean = mean;
- this.logMean = FastMath.log(mean);
- }
- /**
- * Access the mean.
- *
- * @return the mean.
- */
- public double getMean() {
- return mean;
- }
- /** {@inheritDoc} */
- @Override
- public double density(double x) {
- final double logDensity = logDensity(x);
- return logDensity == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logDensity);
- }
- /** {@inheritDoc} **/
- @Override
- public double logDensity(double x) {
- if (x < 0) {
- return Double.NEGATIVE_INFINITY;
- }
- return -x / mean - logMean;
- }
- /**
- * {@inheritDoc}
- *
- * The implementation of this method is based on:
- * <ul>
- * <li>
- * <a href="http://mathworld.wolfram.com/ExponentialDistribution.html">
- * Exponential Distribution</a>, equation (1).</li>
- * </ul>
- */
- @Override
- public double cumulativeProbability(double x) {
- double ret;
- if (x <= 0.0) {
- ret = 0.0;
- } else {
- ret = 1.0 - FastMath.exp(-x / mean);
- }
- return ret;
- }
- /**
- * {@inheritDoc}
- *
- * Returns {@code 0} when {@code p= = 0} and
- * {@code Double.POSITIVE_INFINITY} when {@code p == 1}.
- */
- @Override
- public double inverseCumulativeProbability(double p) throws MathIllegalArgumentException {
- MathUtils.checkRangeInclusive(p, 0, 1);
- double ret;
- if (p == 1.0) {
- ret = Double.POSITIVE_INFINITY;
- } else {
- ret = -mean * FastMath.log(1.0 - p);
- }
- return ret;
- }
- /**
- * {@inheritDoc}
- *
- * For mean parameter {@code k}, the mean is {@code k}.
- */
- @Override
- public double getNumericalMean() {
- return getMean();
- }
- /**
- * {@inheritDoc}
- *
- * For mean parameter {@code k}, the variance is {@code k^2}.
- */
- @Override
- public double getNumericalVariance() {
- final double m = getMean();
- return m * m;
- }
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 no matter the mean parameter.
- *
- * @return lower bound of the support (always 0)
- */
- @Override
- public double getSupportLowerBound() {
- return 0;
- }
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always positive infinity
- * no matter the mean parameter.
- *
- * @return upper bound of the support (always Double.POSITIVE_INFINITY)
- */
- @Override
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- @Override
- public boolean isSupportConnected() {
- return true;
- }
- }