BetaDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.distribution.continuous;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.special.Beta;
- import org.hipparchus.special.Gamma;
- import org.hipparchus.util.FastMath;
- /**
- * Implements the Beta distribution.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Beta_distribution">Beta distribution</a>
- */
- public class BetaDistribution extends AbstractRealDistribution {
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20160320L;
- /** First shape parameter. */
- private final double alpha;
- /** Second shape parameter. */
- private final double beta;
- /** Normalizing factor used in density computations. */
- private final double z;
- /**
- * Build a new instance.
- *
- * @param alpha First shape parameter (must be positive).
- * @param beta Second shape parameter (must be positive).
- */
- public BetaDistribution(double alpha, double beta) {
- this(alpha, beta, DEFAULT_SOLVER_ABSOLUTE_ACCURACY);
- }
- /**
- * Build a new instance.
- *
- * @param alpha First shape parameter (must be positive).
- * @param beta Second shape parameter (must be positive).
- * @param inverseCumAccuracy Maximum absolute error in inverse
- * cumulative probability estimates (defaults to
- * {@link #DEFAULT_SOLVER_ABSOLUTE_ACCURACY}).
- */
- public BetaDistribution(double alpha, double beta, double inverseCumAccuracy) {
- super(inverseCumAccuracy);
- this.alpha = alpha;
- this.beta = beta;
- this.z = Gamma.logGamma(alpha) +
- Gamma.logGamma(beta) -
- Gamma.logGamma(alpha + beta);
- }
- /**
- * Access the first shape parameter, {@code alpha}.
- *
- * @return the first shape parameter.
- */
- public double getAlpha() {
- return alpha;
- }
- /**
- * Access the second shape parameter, {@code beta}.
- *
- * @return the second shape parameter.
- */
- public double getBeta() {
- return beta;
- }
- /** {@inheritDoc} */
- @Override
- public double density(double x) {
- final double logDensity = logDensity(x);
- return logDensity == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logDensity);
- }
- /** {@inheritDoc} **/
- @Override
- public double logDensity(double x) {
- if (x < 0 || x > 1) {
- return Double.NEGATIVE_INFINITY;
- } else if (x == 0) {
- if (alpha < 1) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_0_FOR_SOME_ALPHA,
- alpha, 1, false);
- }
- return Double.NEGATIVE_INFINITY;
- } else if (x == 1) {
- if (beta < 1) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_1_FOR_SOME_BETA,
- beta, 1, false);
- }
- return Double.NEGATIVE_INFINITY;
- } else {
- double logX = FastMath.log(x);
- double log1mX = FastMath.log1p(-x);
- return (alpha - 1) * logX + (beta - 1) * log1mX - z;
- }
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- if (x <= 0) {
- return 0;
- } else if (x >= 1) {
- return 1;
- } else {
- return Beta.regularizedBeta(x, alpha, beta);
- }
- }
- /**
- * {@inheritDoc}
- *
- * For first shape parameter {@code alpha} and second shape parameter
- * {@code beta}, the mean is {@code alpha / (alpha + beta)}.
- */
- @Override
- public double getNumericalMean() {
- final double a = getAlpha();
- return a / (a + getBeta());
- }
- /**
- * {@inheritDoc}
- *
- * For first shape parameter {@code alpha} and second shape parameter
- * {@code beta}, the variance is
- * {@code (alpha * beta) / [(alpha + beta)^2 * (alpha + beta + 1)]}.
- */
- @Override
- public double getNumericalVariance() {
- final double a = getAlpha();
- final double b = getBeta();
- final double alphabetasum = a + b;
- return (a * b) / ((alphabetasum * alphabetasum) * (alphabetasum + 1));
- }
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 no matter the parameters.
- *
- * @return lower bound of the support (always 0)
- */
- @Override
- public double getSupportLowerBound() {
- return 0;
- }
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always 1 no matter the parameters.
- *
- * @return upper bound of the support (always 1)
- */
- @Override
- public double getSupportUpperBound() {
- return 1;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- @Override
- public boolean isSupportConnected() {
- return true;
- }
- }