AbstractRealDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.distribution.continuous;
- import java.io.Serializable;
- import org.hipparchus.analysis.UnivariateFunction;
- import org.hipparchus.analysis.solvers.UnivariateSolverUtils;
- import org.hipparchus.distribution.RealDistribution;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * Base class for probability distributions on the reals.
- * <p>
- * Default implementations are provided for some of the methods
- * that do not vary from distribution to distribution.
- */
- public abstract class AbstractRealDistribution
- implements RealDistribution, Serializable {
- /** Default absolute accuracy for inverse cumulative computation. */
- protected static final double DEFAULT_SOLVER_ABSOLUTE_ACCURACY = 1e-9;
- /** Serializable version identifier */
- private static final long serialVersionUID = 20160320L;
- /** Inverse cumulative probability accuracy. */
- private final double solverAbsoluteAccuracy;
- /** Simple constructor.
- * @param solverAbsoluteAccuracy the absolute accuracy to use when
- * computing the inverse cumulative probability.
- */
- protected AbstractRealDistribution(double solverAbsoluteAccuracy) {
- this.solverAbsoluteAccuracy = solverAbsoluteAccuracy;
- }
- /**
- * Create a real distribution with default solver absolute accuracy.
- */
- protected AbstractRealDistribution() {
- this.solverAbsoluteAccuracy = DEFAULT_SOLVER_ABSOLUTE_ACCURACY;
- }
- /**
- * For a random variable {@code X} whose values are distributed according
- * to this distribution, this method returns {@code P(x0 < X <= x1)}.
- *
- * @param x0 Lower bound (excluded).
- * @param x1 Upper bound (included).
- * @return the probability that a random variable with this distribution
- * takes a value between {@code x0} and {@code x1}, excluding the lower
- * and including the upper endpoint.
- * @throws MathIllegalArgumentException if {@code x0 > x1}.
- * The default implementation uses the identity
- * {@code P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)}
- */
- @Override
- public double probability(double x0,
- double x1) throws MathIllegalArgumentException {
- if (x0 > x1) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT,
- x0, x1, true);
- }
- return cumulativeProbability(x1) - cumulativeProbability(x0);
- }
- /**
- * {@inheritDoc}
- *
- * The default implementation returns
- * <ul>
- * <li>{@link #getSupportLowerBound()} for {@code p = 0},</li>
- * <li>{@link #getSupportUpperBound()} for {@code p = 1}.</li>
- * </ul>
- */
- @Override
- public double inverseCumulativeProbability(final double p) throws MathIllegalArgumentException {
- /*
- * IMPLEMENTATION NOTES
- * --------------------
- * Where applicable, use is made of the one-sided Chebyshev inequality
- * to bracket the root. This inequality states that
- * P(X - mu >= k * sig) <= 1 / (1 + k^2),
- * mu: mean, sig: standard deviation. Equivalently
- * 1 - P(X < mu + k * sig) <= 1 / (1 + k^2),
- * F(mu + k * sig) >= k^2 / (1 + k^2).
- *
- * For k = sqrt(p / (1 - p)), we find
- * F(mu + k * sig) >= p,
- * and (mu + k * sig) is an upper-bound for the root.
- *
- * Then, introducing Y = -X, mean(Y) = -mu, sd(Y) = sig, and
- * P(Y >= -mu + k * sig) <= 1 / (1 + k^2),
- * P(-X >= -mu + k * sig) <= 1 / (1 + k^2),
- * P(X <= mu - k * sig) <= 1 / (1 + k^2),
- * F(mu - k * sig) <= 1 / (1 + k^2).
- *
- * For k = sqrt((1 - p) / p), we find
- * F(mu - k * sig) <= p,
- * and (mu - k * sig) is a lower-bound for the root.
- *
- * In cases where the Chebyshev inequality does not apply, geometric
- * progressions 1, 2, 4, ... and -1, -2, -4, ... are used to bracket
- * the root.
- */
- MathUtils.checkRangeInclusive(p, 0, 1);
- double lowerBound = getSupportLowerBound();
- if (p == 0.0) {
- return lowerBound;
- }
- double upperBound = getSupportUpperBound();
- if (p == 1.0) {
- return upperBound;
- }
- final double mu = getNumericalMean();
- final double sig = FastMath.sqrt(getNumericalVariance());
- final boolean chebyshevApplies;
- chebyshevApplies = !(Double.isInfinite(mu) || Double.isNaN(mu) ||
- Double.isInfinite(sig) || Double.isNaN(sig));
- if (lowerBound == Double.NEGATIVE_INFINITY) {
- if (chebyshevApplies) {
- lowerBound = mu - sig * FastMath.sqrt((1. - p) / p);
- } else {
- lowerBound = -1.0;
- while (cumulativeProbability(lowerBound) >= p) {
- lowerBound *= 2.0;
- }
- }
- }
- if (upperBound == Double.POSITIVE_INFINITY) {
- if (chebyshevApplies) {
- upperBound = mu + sig * FastMath.sqrt(p / (1. - p));
- } else {
- upperBound = 1.0;
- while (cumulativeProbability(upperBound) < p) {
- upperBound *= 2.0;
- }
- }
- }
- final UnivariateFunction toSolve = new UnivariateFunction() {
- /** {@inheritDoc} */
- @Override
- public double value(final double x) {
- return cumulativeProbability(x) - p;
- }
- };
- double x = UnivariateSolverUtils.solve(toSolve,
- lowerBound,
- upperBound,
- getSolverAbsoluteAccuracy());
- if (!isSupportConnected()) {
- /* Test for plateau. */
- final double dx = getSolverAbsoluteAccuracy();
- if (x - dx >= getSupportLowerBound()) {
- double px = cumulativeProbability(x);
- if (cumulativeProbability(x - dx) == px) {
- upperBound = x;
- while (upperBound - lowerBound > dx) {
- final double midPoint = 0.5 * (lowerBound + upperBound);
- if (cumulativeProbability(midPoint) < px) {
- lowerBound = midPoint;
- } else {
- upperBound = midPoint;
- }
- }
- return upperBound;
- }
- }
- }
- return x;
- }
- /**
- * Returns the solver absolute accuracy for inverse cumulative computation.
- * You can override this method in order to use a Brent solver with an
- * absolute accuracy different from the default.
- *
- * @return the maximum absolute error in inverse cumulative probability estimates
- */
- protected double getSolverAbsoluteAccuracy() {
- return solverAbsoluteAccuracy;
- }
- /**
- * {@inheritDoc}
- * <p>
- * The default implementation simply computes the logarithm of {@code density(x)}.
- */
- @Override
- public double logDensity(double x) {
- return FastMath.log(density(x));
- }
- }