DfpMath.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.dfp;
- /** Mathematical routines for use with {@link Dfp}.
- * The constants are defined in {@link DfpField}
- */
- public class DfpMath {
- /** Name for traps triggered by pow. */
- private static final String POW_TRAP = "pow";
- /**
- * Private Constructor.
- */
- private DfpMath() {
- }
- /** Breaks a string representation up into two dfp's.
- * <p>The two dfp are such that the sum of them is equivalent
- * to the input string, but has higher precision than using a
- * single dfp. This is useful for improving accuracy of
- * exponentiation and critical multiplies.
- * @param field field to which the Dfp must belong
- * @param a string representation to split
- * @return an array of two {@link Dfp} which sum is a
- */
- protected static Dfp[] split(final DfpField field, final String a) {
- Dfp[] result = new Dfp[2];
- boolean leading = true;
- int sp = 0;
- int sig = 0;
- StringBuilder builder1 = new StringBuilder(a.length());
- for (int i = 0; i < a.length(); i++) {
- final char c = a.charAt(i);
- builder1.append(c);
- if (c >= '1' && c <= '9') {
- leading = false;
- }
- if (c == '.') {
- sig += (400 - sig) % 4;
- leading = false;
- }
- if (sig == (field.getRadixDigits() / 2) * 4) {
- sp = i;
- break;
- }
- if (c >= '0' &&c <= '9' && !leading) {
- sig ++;
- }
- }
- result[0] = field.newDfp(builder1.substring(0, sp));
- StringBuilder builder2 = new StringBuilder(a.length());
- for (int i = 0; i < a.length(); i++) {
- final char c = a.charAt(i);
- if (c >= '0' && c <= '9' && i < sp) {
- builder2.append('0');
- } else {
- builder2.append(c);
- }
- }
- result[1] = field.newDfp(builder2.toString());
- return result;
- }
- /** Splits a {@link Dfp} into 2 {@link Dfp}'s such that their sum is equal to the input {@link Dfp}.
- * @param a number to split
- * @return two elements array containing the split number
- */
- protected static Dfp[] split(final Dfp a) {
- final Dfp[] result = new Dfp[2];
- final Dfp shift = a.multiply(a.power10K(a.getRadixDigits() / 2));
- result[0] = a.add(shift).subtract(shift);
- result[1] = a.subtract(result[0]);
- return result;
- }
- /** Multiply two numbers that are split in to two pieces that are
- * meant to be added together.
- * Use binomial multiplication so ab = a0 b0 + a0 b1 + a1 b0 + a1 b1
- * Store the first term in result0, the rest in result1
- * @param a first factor of the multiplication, in split form
- * @param b second factor of the multiplication, in split form
- * @return a × b, in split form
- */
- protected static Dfp[] splitMult(final Dfp[] a, final Dfp[] b) {
- final Dfp[] result = new Dfp[2];
- result[1] = a[0].getZero();
- result[0] = a[0].multiply(b[0]);
- /* If result[0] is infinite or zero, don't compute result[1].
- * Attempting to do so may produce NaNs.
- */
- if (result[0].classify() == Dfp.INFINITE || result[0].equals(result[1])) {
- return result;
- }
- result[1] = a[0].multiply(b[1]).add(a[1].multiply(b[0])).add(a[1].multiply(b[1]));
- return result;
- }
- /** Divide two numbers that are split in to two pieces that are meant to be added together.
- * Inverse of split multiply above:
- * (a+b) / (c+d) = (a/c) + ( (bc-ad)/(c**2+cd) )
- * @param a dividend, in split form
- * @param b divisor, in split form
- * @return a / b, in split form
- */
- protected static Dfp[] splitDiv(final Dfp[] a, final Dfp[] b) {
- final Dfp[] result;
- result = new Dfp[2];
- result[0] = a[0].divide(b[0]);
- result[1] = a[1].multiply(b[0]).subtract(a[0].multiply(b[1]));
- result[1] = result[1].divide(b[0].multiply(b[0]).add(b[0].multiply(b[1])));
- return result;
- }
- /** Raise a split base to the a power.
- * @param base number to raise
- * @param a power
- * @return base<sup>a</sup>
- */
- protected static Dfp splitPow(final Dfp[] base, int a) {
- boolean invert = false;
- Dfp[] r = new Dfp[2];
- Dfp[] result = new Dfp[2];
- result[0] = base[0].getOne();
- result[1] = base[0].getZero();
- if (a == 0) {
- // Special case a = 0
- return result[0].add(result[1]);
- }
- if (a < 0) {
- // If a is less than zero
- invert = true;
- a = -a;
- }
- // Exponentiate by successive squaring
- do {
- r[0] = new Dfp(base[0]);
- r[1] = new Dfp(base[1]);
- int trial = 1;
- int prevtrial;
- while (true) {
- prevtrial = trial;
- trial *= 2;
- if (trial > a) {
- break;
- }
- r = splitMult(r, r);
- }
- trial = prevtrial;
- a -= trial;
- result = splitMult(result, r);
- } while (a >= 1);
- result[0] = result[0].add(result[1]);
- if (invert) {
- result[0] = base[0].getOne().divide(result[0]);
- }
- return result[0];
- }
- /** Raises base to the power a by successive squaring.
- * @param base number to raise
- * @param a power
- * @return base<sup>a</sup>
- */
- public static Dfp pow(Dfp base, int a)
- {
- boolean invert = false;
- Dfp result = base.getOne();
- if (a == 0) {
- // Special case
- return result;
- }
- if (a < 0) {
- invert = true;
- a = -a;
- }
- // Exponentiate by successive squaring
- do {
- Dfp r = new Dfp(base);
- Dfp prevr;
- int trial = 1;
- int prevtrial;
- do {
- prevr = new Dfp(r);
- prevtrial = trial;
- r = r.square();
- trial *= 2;
- } while (a>trial);
- r = prevr;
- trial = prevtrial;
- a -= trial;
- result = result.multiply(r);
- } while (a >= 1);
- if (invert) {
- result = base.getOne().divide(result);
- }
- return base.newInstance(result);
- }
- /** Computes e to the given power.
- * a is broken into two parts, such that a = n+m where n is an integer.
- * We use pow() to compute e<sup>n</sup> and a Taylor series to compute
- * e<sup>m</sup>. We return e*<sup>n</sup> × e<sup>m</sup>
- * @param a power at which e should be raised
- * @return e<sup>a</sup>
- */
- public static Dfp exp(final Dfp a) {
- final Dfp inta = a.rint();
- final Dfp fraca = a.subtract(inta);
- final int ia = inta.intValue();
- if (ia > 2147483646) {
- // return +Infinity
- return a.newInstance((byte)1, Dfp.INFINITE);
- }
- if (ia < -2147483646) {
- // return 0;
- return a.newInstance();
- }
- final Dfp einta = splitPow(a.getField().getESplit(), ia);
- final Dfp efraca = expInternal(fraca);
- return einta.multiply(efraca);
- }
- /** Computes e to the given power.
- * Where -1 < a < 1. Use the classic Taylor series. 1 + x**2/2! + x**3/3! + x**4/4! ...
- * @param a power at which e should be raised
- * @return e<sup>a</sup>
- */
- protected static Dfp expInternal(final Dfp a) {
- Dfp y = a.getOne();
- Dfp x = a.getOne();
- Dfp fact = a.getOne();
- Dfp py = new Dfp(y);
- for (int i = 1; i < 90; i++) {
- x = x.multiply(a);
- fact = fact.divide(i);
- y = y.add(x.multiply(fact));
- if (y.equals(py)) {
- break;
- }
- py = new Dfp(y);
- }
- return y;
- }
- /** Returns the natural logarithm of a.
- * a is first split into three parts such that a = (10000^h)(2^j)k.
- * ln(a) is computed by ln(a) = ln(5)*h + ln(2)*(h+j) + ln(k)
- * k is in the range 2/3 < k < 4/3 and is passed on to a series expansion.
- * @param a number from which logarithm is requested
- * @return log(a)
- */
- public static Dfp log(Dfp a) {
- int lr;
- Dfp x;
- int ix;
- int p2 = 0;
- // Check the arguments somewhat here
- if (a.equals(a.getZero()) || a.lessThan(a.getZero()) || a.isNaN()) {
- // negative, zero or NaN
- a.getField().setIEEEFlagsBits(DfpField.FLAG_INVALID);
- return a.dotrap(DfpField.FLAG_INVALID, "ln", a, a.newInstance((byte)1, Dfp.QNAN));
- }
- if (a.classify() == Dfp.INFINITE) {
- return a;
- }
- x = new Dfp(a);
- lr = x.log10K();
- x = x.divide(pow(a.newInstance(10000), lr)); /* This puts x in the range 0-10000 */
- ix = x.floor().intValue();
- while (ix > 2) {
- ix >>= 1;
- p2++;
- }
- Dfp[] spx = split(x);
- Dfp[] spy = new Dfp[2];
- spy[0] = pow(a.getTwo(), p2); // use spy[0] temporarily as a divisor
- spx[0] = spx[0].divide(spy[0]);
- spx[1] = spx[1].divide(spy[0]);
- spy[0] = a.newInstance("1.33333"); // Use spy[0] for comparison
- while (spx[0].add(spx[1]).greaterThan(spy[0])) {
- spx[0] = spx[0].divide(2);
- spx[1] = spx[1].divide(2);
- p2++;
- }
- // X is now in the range of 2/3 < x < 4/3
- Dfp[] spz = logInternal(spx);
- spx[0] = a.newInstance(new StringBuilder().append(p2+4*lr).toString());
- spx[1] = a.getZero();
- spy = splitMult(a.getField().getLn2Split(), spx);
- spz[0] = spz[0].add(spy[0]);
- spz[1] = spz[1].add(spy[1]);
- spx[0] = a.newInstance(new StringBuilder().append(4*lr).toString());
- spx[1] = a.getZero();
- spy = splitMult(a.getField().getLn5Split(), spx);
- spz[0] = spz[0].add(spy[0]);
- spz[1] = spz[1].add(spy[1]);
- return a.newInstance(spz[0].add(spz[1]));
- }
- /** Computes the natural log of a number between 0 and 2.
- * Let f(x) = ln(x),
- *
- * We know that f'(x) = 1/x, thus from Taylor's theorum we have:
- *
- * ----- n+1 n
- * f(x) = \ (-1) (x - 1)
- * / ---------------- for 1 <= n <= infinity
- * ----- n
- *
- * or
- * 2 3 4
- * (x-1) (x-1) (x-1)
- * ln(x) = (x-1) - ----- + ------ - ------ + ...
- * 2 3 4
- *
- * alternatively,
- *
- * 2 3 4
- * x x x
- * ln(x+1) = x - - + - - - + ...
- * 2 3 4
- *
- * This series can be used to compute ln(x), but it converges too slowly.
- *
- * If we substitute -x for x above, we get
- *
- * 2 3 4
- * x x x
- * ln(1-x) = -x - - - - - - + ...
- * 2 3 4
- *
- * Note that all terms are now negative. Because the even powered ones
- * absorbed the sign. Now, subtract the series above from the previous
- * one to get ln(x+1) - ln(1-x). Note the even terms cancel out leaving
- * only the odd ones
- *
- * 3 5 7
- * 2x 2x 2x
- * ln(x+1) - ln(x-1) = 2x + --- + --- + ---- + ...
- * 3 5 7
- *
- * By the property of logarithms that ln(a) - ln(b) = ln (a/b) we have:
- *
- * 3 5 7
- * x+1 / x x x \
- * ln ----- = 2 * | x + ---- + ---- + ---- + ... |
- * x-1 \ 3 5 7 /
- *
- * But now we want to find ln(a), so we need to find the value of x
- * such that a = (x+1)/(x-1). This is easily solved to find that
- * x = (a-1)/(a+1).
- * @param a number from which logarithm is requested, in split form
- * @return log(a)
- */
- protected static Dfp[] logInternal(final Dfp[] a) {
- /* Now we want to compute x = (a-1)/(a+1) but this is prone to
- * loss of precision. So instead, compute x = (a/4 - 1/4) / (a/4 + 1/4)
- */
- Dfp t = a[0].divide(4).add(a[1].divide(4));
- Dfp x = t.add(a[0].newInstance("-0.25")).divide(t.add(a[0].newInstance("0.25")));
- Dfp y = new Dfp(x);
- Dfp num = new Dfp(x);
- Dfp py = new Dfp(y);
- int den = 1;
- for (int i = 0; i < 10000; i++) {
- num = num.multiply(x);
- num = num.multiply(x);
- den += 2;
- t = num.divide(den);
- y = y.add(t);
- if (y.equals(py)) {
- break;
- }
- py = new Dfp(y);
- }
- y = y.multiply(a[0].getTwo());
- return split(y);
- }
- /** Computes x to the y power.
- *
- * <p>Uses the following method:</p>
- *
- * <ol>
- * <li> Set u = rint(y), v = y-u
- * <li> Compute a = v * ln(x)
- * <li> Compute b = rint( a/ln(2) )
- * <li> Compute c = a - b*ln(2)
- * <li> x<sup>y</sup> = x<sup>u</sup> * 2<sup>b</sup> * e<sup>c</sup>
- * </ol>
- * if |y| > 1e8, then we compute by exp(y*ln(x))
- *
- * <p>Special Cases</p>
- * <ul>
- * <li> if y is 0.0 or -0.0 then result is 1.0</li>
- * <li> if y is 1.0 then result is x</li>
- * <li> if y is NaN then result is NaN</li>
- * <li> if x is NaN and y is not zero then result is NaN</li>
- * <li> if |x| > 1.0 and y is +Infinity then result is +Infinity</li>
- * <li> if |x| < 1.0 and y is -Infinity then result is +Infinity</li>
- * <li> if |x| > 1.0 and y is -Infinity then result is +0</li>
- * <li> if |x| < 1.0 and y is +Infinity then result is +0</li>
- * <li> if |x| = 1.0 and y is +/-Infinity then result is NaN</li>
- * <li> if x = +0 and y > 0 then result is +0</li>
- * <li> if x = +Inf and y < 0 then result is +0</li>
- * <li> if x = +0 and y < 0 then result is +Inf</li>
- * <li> if x = +Inf and y > 0 then result is +Inf</li>
- * <li> if x = -0 and y > 0, finite, not odd integer then result is +0</li>
- * <li> if x = -0 and y < 0, finite, and odd integer then result is -Inf</li>
- * <li> if x = -Inf and y > 0, finite, and odd integer then result is -Inf</li>
- * <li> if x = -0 and y < 0, not finite odd integer then result is +Inf</li>
- * <li> if x = -Inf and y > 0, not finite odd integer then result is +Inf</li>
- * <li> if x < 0 and y > 0, finite, and odd integer then result is -(|x|<sup>y</sup>)</li>
- * <li> if x < 0 and y > 0, finite, and not integer then result is NaN</li>
- * </ul>
- * @param x base to be raised
- * @param y power to which base should be raised
- * @return x<sup>y</sup>
- */
- public static Dfp pow(Dfp x, final Dfp y) {
- // make sure we don't mix number with different precision
- if (x.getField().getRadixDigits() != y.getField().getRadixDigits()) {
- x.getField().setIEEEFlagsBits(DfpField.FLAG_INVALID);
- final Dfp result = x.newInstance(x.getZero());
- result.nans = Dfp.QNAN;
- return x.dotrap(DfpField.FLAG_INVALID, POW_TRAP, x, result);
- }
- final Dfp zero = x.getZero();
- final Dfp one = x.getOne();
- final Dfp two = x.getTwo();
- boolean invert = false;
- int ui;
- /* Check for special cases */
- if (y.equals(zero)) {
- return x.newInstance(one);
- }
- if (y.equals(one)) {
- if (x.isNaN()) {
- // Test for NaNs
- x.getField().setIEEEFlagsBits(DfpField.FLAG_INVALID);
- return x.dotrap(DfpField.FLAG_INVALID, POW_TRAP, x, x);
- }
- return x;
- }
- if (x.isNaN() || y.isNaN()) {
- // Test for NaNs
- x.getField().setIEEEFlagsBits(DfpField.FLAG_INVALID);
- return x.dotrap(DfpField.FLAG_INVALID, POW_TRAP, x, x.newInstance((byte)1, Dfp.QNAN));
- }
- // X == 0
- if (x.equals(zero)) {
- if (Dfp.copysign(one, x).greaterThan(zero)) {
- // X == +0
- if (y.greaterThan(zero)) {
- return x.newInstance(zero);
- } else {
- return x.newInstance(x.newInstance((byte)1, Dfp.INFINITE));
- }
- } else {
- // X == -0
- if (y.classify() == Dfp.FINITE && y.rint().equals(y) && !y.remainder(two).equals(zero)) {
- // If y is odd integer
- if (y.greaterThan(zero)) {
- return x.newInstance(zero.negate());
- } else {
- return x.newInstance(x.newInstance((byte)-1, Dfp.INFINITE));
- }
- } else {
- // Y is not odd integer
- if (y.greaterThan(zero)) {
- return x.newInstance(zero);
- } else {
- return x.newInstance(x.newInstance((byte)1, Dfp.INFINITE));
- }
- }
- }
- }
- if (x.lessThan(zero)) {
- // Make x positive, but keep track of it
- x = x.negate();
- invert = true;
- }
- if (x.greaterThan(one) && y.classify() == Dfp.INFINITE) {
- if (y.greaterThan(zero)) {
- return y;
- } else {
- return x.newInstance(zero);
- }
- }
- if (x.lessThan(one) && y.classify() == Dfp.INFINITE) {
- if (y.greaterThan(zero)) {
- return x.newInstance(zero);
- } else {
- return x.newInstance(Dfp.copysign(y, one));
- }
- }
- if (x.equals(one) && y.classify() == Dfp.INFINITE) {
- x.getField().setIEEEFlagsBits(DfpField.FLAG_INVALID);
- return x.dotrap(DfpField.FLAG_INVALID, POW_TRAP, x, x.newInstance((byte)1, Dfp.QNAN));
- }
- if (x.classify() == Dfp.INFINITE) {
- // x = +/- inf
- if (invert) {
- // negative infinity
- if (y.classify() == Dfp.FINITE && y.rint().equals(y) && !y.remainder(two).equals(zero)) {
- // If y is odd integer
- if (y.greaterThan(zero)) {
- return x.newInstance(x.newInstance((byte)-1, Dfp.INFINITE));
- } else {
- return x.newInstance(zero.negate());
- }
- } else {
- // Y is not odd integer
- if (y.greaterThan(zero)) {
- return x.newInstance(x.newInstance((byte)1, Dfp.INFINITE));
- } else {
- return x.newInstance(zero);
- }
- }
- } else {
- // positive infinity
- if (y.greaterThan(zero)) {
- return x;
- } else {
- return x.newInstance(zero);
- }
- }
- }
- if (invert && !y.rint().equals(y)) {
- x.getField().setIEEEFlagsBits(DfpField.FLAG_INVALID);
- return x.dotrap(DfpField.FLAG_INVALID, POW_TRAP, x, x.newInstance((byte)1, Dfp.QNAN));
- }
- // End special cases
- Dfp r;
- if (y.lessThan(x.newInstance(100000000)) && y.greaterThan(x.newInstance(-100000000))) {
- final Dfp u = y.rint();
- ui = u.intValue();
- final Dfp v = y.subtract(u);
- if (v.unequal(zero)) {
- final Dfp a = v.multiply(log(x));
- final Dfp b = a.divide(x.getField().getLn2()).rint();
- final Dfp c = a.subtract(b.multiply(x.getField().getLn2()));
- r = splitPow(split(x), ui);
- r = r.multiply(pow(two, b.intValue()));
- r = r.multiply(exp(c));
- } else {
- r = splitPow(split(x), ui);
- }
- } else {
- // very large exponent. |y| > 1e8
- r = exp(log(x).multiply(y));
- }
- if (invert && y.rint().equals(y) && !y.remainder(two).equals(zero)) {
- // if y is odd integer
- r = r.negate();
- }
- return x.newInstance(r);
- }
- /** Computes sin(a) Used when 0 < a < pi/4.
- * Uses the classic Taylor series. x - x**3/3! + x**5/5! ...
- * @param a number from which sine is desired, in split form
- * @return sin(a)
- */
- protected static Dfp sinInternal(Dfp[] a) {
- Dfp c = a[0].add(a[1]);
- Dfp y = c;
- c = c.square();
- Dfp x = y;
- Dfp fact = a[0].getOne();
- Dfp py = new Dfp(y);
- for (int i = 3; i < 90; i += 2) {
- x = x.multiply(c);
- x = x.negate();
- fact = fact.divide((i-1)*i); // 1 over fact
- y = y.add(x.multiply(fact));
- if (y.equals(py)) {
- break;
- }
- py = new Dfp(y);
- }
- return y;
- }
- /** Computes cos(a) Used when 0 < a < pi/4.
- * Uses the classic Taylor series for cosine. 1 - x**2/2! + x**4/4! ...
- * @param a number from which cosine is desired, in split form
- * @return cos(a)
- */
- protected static Dfp cosInternal(Dfp[] a) {
- final Dfp one = a[0].getOne();
- Dfp x = one;
- Dfp y = one;
- Dfp c = a[0].add(a[1]);
- c = c.square();
- Dfp fact = one;
- Dfp py = new Dfp(y);
- for (int i = 2; i < 90; i += 2) {
- x = x.multiply(c);
- x = x.negate();
- fact = fact.divide((i - 1) * i); // 1 over fact
- y = y.add(x.multiply(fact));
- if (y.equals(py)) {
- break;
- }
- py = new Dfp(y);
- }
- return y;
- }
- /** computes the sine of the argument.
- * @param a number from which sine is desired
- * @return sin(a)
- */
- public static Dfp sin(final Dfp a) {
- final Dfp pi = a.getField().getPi();
- final Dfp zero = a.getField().getZero();
- boolean neg = false;
- /* First reduce the argument to the range of +/- PI */
- Dfp x = a.remainder(pi.multiply(2));
- /* if x < 0 then apply identity sin(-x) = -sin(x) */
- /* This puts x in the range 0 < x < PI */
- if (x.lessThan(zero)) {
- x = x.negate();
- neg = true;
- }
- /* Since sine(x) = sine(pi - x) we can reduce the range to
- * 0 < x < pi/2
- */
- if (x.greaterThan(pi.divide(2))) {
- x = pi.subtract(x);
- }
- Dfp y;
- if (x.lessThan(pi.divide(4))) {
- y = sinInternal(split(x));
- } else {
- final Dfp[] c = new Dfp[2];
- final Dfp[] piSplit = a.getField().getPiSplit();
- c[0] = piSplit[0].divide(2).subtract(x);
- c[1] = piSplit[1].divide(2);
- y = cosInternal(c);
- }
- if (neg) {
- y = y.negate();
- }
- return a.newInstance(y);
- }
- /** computes the cosine of the argument.
- * @param a number from which cosine is desired
- * @return cos(a)
- */
- public static Dfp cos(Dfp a) {
- final Dfp pi = a.getField().getPi();
- final Dfp zero = a.getField().getZero();
- boolean neg = false;
- /* First reduce the argument to the range of +/- PI */
- Dfp x = a.remainder(pi.multiply(2));
- /* if x < 0 then apply identity cos(-x) = cos(x) */
- /* This puts x in the range 0 < x < PI */
- if (x.lessThan(zero)) {
- x = x.negate();
- }
- /* Since cos(x) = -cos(pi - x) we can reduce the range to
- * 0 < x < pi/2
- */
- if (x.greaterThan(pi.divide(2))) {
- x = pi.subtract(x);
- neg = true;
- }
- Dfp y;
- if (x.lessThan(pi.divide(4))) {
- Dfp[] c = new Dfp[2];
- c[0] = x;
- c[1] = zero;
- y = cosInternal(c);
- } else {
- final Dfp[] c = new Dfp[2];
- final Dfp[] piSplit = a.getField().getPiSplit();
- c[0] = piSplit[0].divide(2).subtract(x);
- c[1] = piSplit[1].divide(2);
- y = sinInternal(c);
- }
- if (neg) {
- y = y.negate();
- }
- return a.newInstance(y);
- }
- /** computes the tangent of the argument.
- * @param a number from which tangent is desired
- * @return tan(a)
- */
- public static Dfp tan(final Dfp a) {
- return sin(a).divide(cos(a));
- }
- /** computes the arc-tangent of the argument.
- * @param a number from which arc-tangent is desired
- * @return atan(a)
- */
- protected static Dfp atanInternal(final Dfp a) {
- Dfp y = new Dfp(a);
- Dfp x = new Dfp(y);
- Dfp py = new Dfp(y);
- for (int i = 3; i < 90; i += 2) {
- x = x.multiply(a);
- x = x.multiply(a);
- x = x.negate();
- y = y.add(x.divide(i));
- if (y.equals(py)) {
- break;
- }
- py = new Dfp(y);
- }
- return y;
- }
- /** computes the arc tangent of the argument
- *
- * Uses the typical taylor series
- *
- * but may reduce arguments using the following identity
- * tan(x+y) = (tan(x) + tan(y)) / (1 - tan(x)*tan(y))
- *
- * since tan(PI/8) = sqrt(2)-1,
- *
- * atan(x) = atan( (x - sqrt(2) + 1) / (1+x*sqrt(2) - x) + PI/8.0
- * @param a number from which arc-tangent is desired
- * @return atan(a)
- */
- public static Dfp atan(final Dfp a) {
- final Dfp zero = a.getField().getZero();
- final Dfp one = a.getField().getOne();
- final Dfp[] sqr2Split = a.getField().getSqr2Split();
- final Dfp[] piSplit = a.getField().getPiSplit();
- boolean recp = false;
- boolean neg = false;
- boolean sub = false;
- final Dfp ty = sqr2Split[0].subtract(one).add(sqr2Split[1]);
- Dfp x = new Dfp(a);
- if (x.lessThan(zero)) {
- neg = true;
- x = x.negate();
- }
- if (x.greaterThan(one)) {
- recp = true;
- x = one.divide(x);
- }
- if (x.greaterThan(ty)) {
- Dfp[] sty = new Dfp[2];
- sub = true;
- sty[0] = sqr2Split[0].subtract(one);
- sty[1] = sqr2Split[1];
- Dfp[] xs = split(x);
- Dfp[] ds = splitMult(xs, sty);
- ds[0] = ds[0].add(one);
- xs[0] = xs[0].subtract(sty[0]);
- xs[1] = xs[1].subtract(sty[1]);
- xs = splitDiv(xs, ds);
- x = xs[0].add(xs[1]);
- //x = x.subtract(ty).divide(dfp.one.add(x.multiply(ty)));
- }
- Dfp y = atanInternal(x);
- if (sub) {
- y = y.add(piSplit[0].divide(8)).add(piSplit[1].divide(8));
- }
- if (recp) {
- y = piSplit[0].divide(2).subtract(y).add(piSplit[1].divide(2));
- }
- if (neg) {
- y = y.negate();
- }
- return a.newInstance(y);
- }
- /** computes the arc-sine of the argument.
- * @param a number from which arc-sine is desired
- * @return asin(a)
- */
- public static Dfp asin(final Dfp a) {
- return atan(a.divide(a.getOne().subtract(a.square()).sqrt()));
- }
- /** computes the arc-cosine of the argument.
- * @param a number from which arc-cosine is desired
- * @return acos(a)
- */
- public static Dfp acos(Dfp a) {
- Dfp result;
- boolean negative = false;
- if (a.lessThan(a.getZero())) {
- negative = true;
- }
- a = Dfp.copysign(a, a.getOne()); // absolute value
- result = atan(a.getOne().subtract(a.square()).sqrt().divide(a));
- if (negative) {
- result = a.getField().getPi().subtract(result);
- }
- return a.newInstance(result);
- }
- }