Quaternion.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.complex;
- import java.io.Serializable;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- import org.hipparchus.util.Precision;
- /**
- * This class implements <a href="http://mathworld.wolfram.com/Quaternion.html">
- * quaternions</a> (Hamilton's hypercomplex numbers).
- * <p>
- * Instance of this class are guaranteed to be immutable.
- */
- public final class Quaternion implements Serializable {
- /** Identity quaternion. */
- public static final Quaternion IDENTITY = new Quaternion(1, 0, 0, 0);
- /** Zero quaternion. */
- public static final Quaternion ZERO = new Quaternion(0, 0, 0, 0);
- /** i */
- public static final Quaternion I = new Quaternion(0, 1, 0, 0);
- /** j */
- public static final Quaternion J = new Quaternion(0, 0, 1, 0);
- /** k */
- public static final Quaternion K = new Quaternion(0, 0, 0, 1);
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20092012L;
- /** First component (scalar part). */
- private final double q0;
- /** Second component (first vector part). */
- private final double q1;
- /** Third component (second vector part). */
- private final double q2;
- /** Fourth component (third vector part). */
- private final double q3;
- /**
- * Builds a quaternion from its components.
- *
- * @param a Scalar component.
- * @param b First vector component.
- * @param c Second vector component.
- * @param d Third vector component.
- */
- public Quaternion(final double a,
- final double b,
- final double c,
- final double d) {
- this.q0 = a;
- this.q1 = b;
- this.q2 = c;
- this.q3 = d;
- }
- /**
- * Builds a quaternion from scalar and vector parts.
- *
- * @param scalar Scalar part of the quaternion.
- * @param v Components of the vector part of the quaternion.
- *
- * @throws MathIllegalArgumentException if the array length is not 3.
- */
- public Quaternion(final double scalar, final double[] v)
- throws MathIllegalArgumentException {
- MathUtils.checkDimension(v.length, 3);
- this.q0 = scalar;
- this.q1 = v[0];
- this.q2 = v[1];
- this.q3 = v[2];
- }
- /**
- * Builds a pure quaternion from a vector (assuming that the scalar
- * part is zero).
- *
- * @param v Components of the vector part of the pure quaternion.
- */
- public Quaternion(final double[] v) {
- this(0, v);
- }
- /**
- * Returns the conjugate quaternion of the instance.
- *
- * @return the conjugate quaternion
- */
- public Quaternion getConjugate() {
- return new Quaternion(q0, -q1, -q2, -q3);
- }
- /**
- * Returns the Hamilton product of two quaternions.
- *
- * @param q1 First quaternion.
- * @param q2 Second quaternion.
- * @return the product {@code q1} and {@code q2}, in that order.
- */
- public static Quaternion multiply(final Quaternion q1, final Quaternion q2) {
- // Components of the first quaternion.
- final double q1a = q1.getQ0();
- final double q1b = q1.getQ1();
- final double q1c = q1.getQ2();
- final double q1d = q1.getQ3();
- // Components of the second quaternion.
- final double q2a = q2.getQ0();
- final double q2b = q2.getQ1();
- final double q2c = q2.getQ2();
- final double q2d = q2.getQ3();
- // Components of the product.
- final double w = q1a * q2a - q1b * q2b - q1c * q2c - q1d * q2d;
- final double x = q1a * q2b + q1b * q2a + q1c * q2d - q1d * q2c;
- final double y = q1a * q2c - q1b * q2d + q1c * q2a + q1d * q2b;
- final double z = q1a * q2d + q1b * q2c - q1c * q2b + q1d * q2a;
- return new Quaternion(w, x, y, z);
- }
- /**
- * Returns the Hamilton product of the instance by a quaternion.
- *
- * @param q Quaternion.
- * @return the product of this instance with {@code q}, in that order.
- */
- public Quaternion multiply(final Quaternion q) {
- return multiply(this, q);
- }
- /**
- * Computes the sum of two quaternions.
- *
- * @param q1 Quaternion.
- * @param q2 Quaternion.
- * @return the sum of {@code q1} and {@code q2}.
- */
- public static Quaternion add(final Quaternion q1,
- final Quaternion q2) {
- return new Quaternion(q1.getQ0() + q2.getQ0(),
- q1.getQ1() + q2.getQ1(),
- q1.getQ2() + q2.getQ2(),
- q1.getQ3() + q2.getQ3());
- }
- /**
- * Computes the sum of the instance and another quaternion.
- *
- * @param q Quaternion.
- * @return the sum of this instance and {@code q}
- */
- public Quaternion add(final Quaternion q) {
- return add(this, q);
- }
- /**
- * Subtracts two quaternions.
- *
- * @param q1 First Quaternion.
- * @param q2 Second quaternion.
- * @return the difference between {@code q1} and {@code q2}.
- */
- public static Quaternion subtract(final Quaternion q1,
- final Quaternion q2) {
- return new Quaternion(q1.getQ0() - q2.getQ0(),
- q1.getQ1() - q2.getQ1(),
- q1.getQ2() - q2.getQ2(),
- q1.getQ3() - q2.getQ3());
- }
- /**
- * Subtracts a quaternion from the instance.
- *
- * @param q Quaternion.
- * @return the difference between this instance and {@code q}.
- */
- public Quaternion subtract(final Quaternion q) {
- return subtract(this, q);
- }
- /**
- * Computes the dot-product of two quaternions.
- *
- * @param q1 Quaternion.
- * @param q2 Quaternion.
- * @return the dot product of {@code q1} and {@code q2}.
- */
- public static double dotProduct(final Quaternion q1,
- final Quaternion q2) {
- return q1.getQ0() * q2.getQ0() +
- q1.getQ1() * q2.getQ1() +
- q1.getQ2() * q2.getQ2() +
- q1.getQ3() * q2.getQ3();
- }
- /**
- * Computes the dot-product of the instance by a quaternion.
- *
- * @param q Quaternion.
- * @return the dot product of this instance and {@code q}.
- */
- public double dotProduct(final Quaternion q) {
- return dotProduct(this, q);
- }
- /**
- * Computes the norm of the quaternion.
- *
- * @return the norm.
- */
- public double getNorm() {
- return FastMath.sqrt(q0 * q0 +
- q1 * q1 +
- q2 * q2 +
- q3 * q3);
- }
- /**
- * Computes the normalized quaternion (the versor of the instance).
- * The norm of the quaternion must not be zero.
- *
- * @return a normalized quaternion.
- * @throws MathIllegalArgumentException if the norm of the quaternion is zero.
- */
- public Quaternion normalize() {
- final double norm = getNorm();
- if (norm < Precision.SAFE_MIN) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NORM, norm);
- }
- return new Quaternion(q0 / norm,
- q1 / norm,
- q2 / norm,
- q3 / norm);
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public boolean equals(Object other) {
- if (this == other) {
- return true;
- }
- if (other instanceof Quaternion) {
- final Quaternion q = (Quaternion) other;
- return q0 == q.getQ0() &&
- q1 == q.getQ1() &&
- q2 == q.getQ2() &&
- q3 == q.getQ3();
- }
- return false;
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public int hashCode() {
- // "Effective Java" (second edition, p. 47).
- int result = 17;
- for (double comp : new double[] { q0, q1, q2, q3 }) {
- final int c = MathUtils.hash(comp);
- result = 31 * result + c;
- }
- return result;
- }
- /**
- * Checks whether this instance is equal to another quaternion
- * within a given tolerance.
- *
- * @param q Quaternion with which to compare the current quaternion.
- * @param eps Tolerance.
- * @return {@code true} if the each of the components are equal
- * within the allowed absolute error.
- */
- public boolean equals(final Quaternion q,
- final double eps) {
- return Precision.equals(q0, q.getQ0(), eps) &&
- Precision.equals(q1, q.getQ1(), eps) &&
- Precision.equals(q2, q.getQ2(), eps) &&
- Precision.equals(q3, q.getQ3(), eps);
- }
- /**
- * Checks whether the instance is a unit quaternion within a given
- * tolerance.
- *
- * @param eps Tolerance (absolute error).
- * @return {@code true} if the norm is 1 within the given tolerance,
- * {@code false} otherwise
- */
- public boolean isUnitQuaternion(double eps) {
- return Precision.equals(getNorm(), 1d, eps);
- }
- /**
- * Checks whether the instance is a pure quaternion within a given
- * tolerance.
- *
- * @param eps Tolerance (absolute error).
- * @return {@code true} if the scalar part of the quaternion is zero.
- */
- public boolean isPureQuaternion(double eps) {
- return FastMath.abs(getQ0()) <= eps;
- }
- /**
- * Returns the polar form of the quaternion.
- *
- * @return the unit quaternion with positive scalar part.
- */
- public Quaternion getPositivePolarForm() {
- if (getQ0() < 0) {
- final Quaternion unitQ = normalize();
- // The quaternion of rotation (normalized quaternion) q and -q
- // are equivalent (i.e. represent the same rotation).
- return new Quaternion(-unitQ.getQ0(),
- -unitQ.getQ1(),
- -unitQ.getQ2(),
- -unitQ.getQ3());
- } else {
- return this.normalize();
- }
- }
- /**
- * Returns the inverse of this instance.
- * The norm of the quaternion must not be zero.
- *
- * @return the inverse.
- * @throws MathIllegalArgumentException if the norm (squared) of the quaternion is zero.
- */
- public Quaternion getInverse() {
- final double squareNorm = q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3;
- if (squareNorm < Precision.SAFE_MIN) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NORM, squareNorm);
- }
- return new Quaternion(q0 / squareNorm,
- -q1 / squareNorm,
- -q2 / squareNorm,
- -q3 / squareNorm);
- }
- /**
- * Gets the first component of the quaternion (scalar part).
- *
- * @return the scalar part.
- */
- public double getQ0() {
- return q0;
- }
- /**
- * Gets the second component of the quaternion (first component
- * of the vector part).
- *
- * @return the first component of the vector part.
- */
- public double getQ1() {
- return q1;
- }
- /**
- * Gets the third component of the quaternion (second component
- * of the vector part).
- *
- * @return the second component of the vector part.
- */
- public double getQ2() {
- return q2;
- }
- /**
- * Gets the fourth component of the quaternion (third component
- * of the vector part).
- *
- * @return the third component of the vector part.
- */
- public double getQ3() {
- return q3;
- }
- /**
- * Gets the scalar part of the quaternion.
- *
- * @return the scalar part.
- * @see #getQ0()
- */
- public double getScalarPart() {
- return getQ0();
- }
- /**
- * Gets the three components of the vector part of the quaternion.
- *
- * @return the vector part.
- * @see #getQ1()
- * @see #getQ2()
- * @see #getQ3()
- */
- public double[] getVectorPart() {
- return new double[] { getQ1(), getQ2(), getQ3() };
- }
- /**
- * Multiplies the instance by a scalar.
- *
- * @param alpha Scalar factor.
- * @return a scaled quaternion.
- */
- public Quaternion multiply(final double alpha) {
- return new Quaternion(alpha * q0,
- alpha * q1,
- alpha * q2,
- alpha * q3);
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public String toString() {
- final String sp = " ";
- final StringBuilder s = new StringBuilder();
- s.append('[')
- .append(q0).append(sp)
- .append(q1).append(sp)
- .append(q2).append(sp)
- .append(q3)
- .append(']');
- return s.toString();
- }
- }