- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.complex;
- import java.util.ArrayList;
- import java.util.List;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.FieldSinCos;
- import org.hipparchus.util.FieldSinhCosh;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.MathUtils;
- import org.hipparchus.util.Precision;
- /**
- * Representation of a Complex number, i.e. a number which has both a
- * real and imaginary part.
- * <p>
- * Implementations of arithmetic operations handle {@code NaN} and
- * infinite values according to the rules for {@link java.lang.Double}, i.e.
- * {@link #equals} is an equivalence relation for all instances that have
- * a {@code NaN} in either real or imaginary part, e.g. the following are
- * considered equal:
- * <ul>
- * <li>{@code 1 + NaNi}</li>
- * <li>{@code NaN + i}</li>
- * <li>{@code NaN + NaNi}</li>
- * </ul>
- * <p>
- * Note that this contradicts the IEEE-754 standard for floating
- * point numbers (according to which the test {@code x == x} must fail if
- * {@code x} is {@code NaN}). The method
- * {@link org.hipparchus.util.Precision#equals(double,double,int)
- * equals for primitive double} in {@link org.hipparchus.util.Precision}
- * conforms with IEEE-754 while this class conforms with the standard behavior
- * for Java object types.
- * @param <T> the type of the field elements
- * @since 2.0
- */
- public class FieldComplex<T extends CalculusFieldElement<T>> implements CalculusFieldElement<FieldComplex<T>> {
- /** A real number representing log(10). */
- private static final double LOG10 = 2.302585092994045684;
- /** The imaginary part. */
- private final T imaginary;
- /** The real part. */
- private final T real;
- /** Record whether this complex number is equal to NaN. */
- private final transient boolean isNaN;
- /** Record whether this complex number is infinite. */
- private final transient boolean isInfinite;
- /**
- * Create a complex number given only the real part.
- *
- * @param real Real part.
- */
- public FieldComplex(T real) {
- this(real, real.getField().getZero());
- }
- /**
- * Create a complex number given the real and imaginary parts.
- *
- * @param real Real part.
- * @param imaginary Imaginary part.
- */
- public FieldComplex(T real, T imaginary) {
- this.real = real;
- this.imaginary = imaginary;
- isNaN = real.isNaN() || imaginary.isNaN();
- isInfinite = !isNaN &&
- (real.isInfinite() || imaginary.isInfinite());
- }
- /** Get the square root of -1.
- * @param field field the complex components belong to
- * @return number representing "0.0 + 1.0i"
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldComplex<T> getI(final Field<T> field) {
- return new FieldComplex<>(field.getZero(), field.getOne());
- }
- /** Get the square root of -1.
- * @param field field the complex components belong to
- * @return number representing "0.0 _ 1.0i"
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldComplex<T> getMinusI(final Field<T> field) {
- return new FieldComplex<>(field.getZero(), field.getOne().negate());
- }
- /** Get a complex number representing "NaN + NaNi".
- * @param field field the complex components belong to
- * @return complex number representing "NaN + NaNi"
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldComplex<T> getNaN(final Field<T> field) {
- return new FieldComplex<>(field.getZero().add(Double.NaN), field.getZero().add(Double.NaN));
- }
- /** Get a complex number representing "+INF + INFi".
- * @param field field the complex components belong to
- * @return complex number representing "+INF + INFi"
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldComplex<T> getInf(final Field<T> field) {
- return new FieldComplex<>(field.getZero().add(Double.POSITIVE_INFINITY), field.getZero().add(Double.POSITIVE_INFINITY));
- }
- /** Get a complex number representing "1.0 + 0.0i".
- * @param field field the complex components belong to
- * @return complex number representing "1.0 + 0.0i"
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldComplex<T> getOne(final Field<T> field) {
- return new FieldComplex<>(field.getOne(), field.getZero());
- }
- /** Get a complex number representing "-1.0 + 0.0i".
- * @param field field the complex components belong to
- * @return complex number representing "-1.0 + 0.0i"
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldComplex<T> getMinusOne(final Field<T> field) {
- return new FieldComplex<>(field.getOne().negate(), field.getZero());
- }
- /** Get a complex number representing "0.0 + 0.0i".
- * @param field field the complex components belong to
- * @return complex number representing "0.0 + 0.0i
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldComplex<T> getZero(final Field<T> field) {
- return new FieldComplex<>(field.getZero(), field.getZero());
- }
- /** Get a complex number representing "π + 0.0i".
- * @param field field the complex components belong to
- * @return complex number representing "π + 0.0i
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldComplex<T> getPi(final Field<T> field) {
- return new FieldComplex<>(field.getZero().getPi(), field.getZero());
- }
- /**
- * Return the absolute value of this complex number.
- * Returns {@code NaN} if either real or imaginary part is {@code NaN}
- * and {@code Double.POSITIVE_INFINITY} if neither part is {@code NaN},
- * but at least one part is infinite.
- *
- * @return the absolute value.
- */
- @Override
- public FieldComplex<T> abs() {
- // we check NaN here because FastMath.hypot checks it after infinity
- return isNaN ? getNaN(getPartsField()) : createComplex(FastMath.hypot(real, imaginary), getPartsField().getZero());
- }
- /**
- * Returns a {@code Complex} whose value is
- * {@code (this + addend)}.
- * Uses the definitional formula
- * <p>
- * {@code (a + bi) + (c + di) = (a+c) + (b+d)i}
- * </p>
- * If either {@code this} or {@code addend} has a {@code NaN} value in
- * either part, {@link #getNaN(Field)} is returned; otherwise {@code Infinite}
- * and {@code NaN} values are returned in the parts of the result
- * according to the rules for {@link java.lang.Double} arithmetic.
- *
- * @param addend Value to be added to this {@code Complex}.
- * @return {@code this + addend}.
- * @throws NullArgumentException if {@code addend} is {@code null}.
- */
- @Override
- public FieldComplex<T> add(FieldComplex<T> addend) throws NullArgumentException {
- MathUtils.checkNotNull(addend);
- if (isNaN || addend.isNaN) {
- return getNaN(getPartsField());
- }
- return createComplex(real.add(addend.getRealPart()),
- imaginary.add(addend.getImaginaryPart()));
- }
- /**
- * Returns a {@code Complex} whose value is {@code (this + addend)},
- * with {@code addend} interpreted as a real number.
- *
- * @param addend Value to be added to this {@code Complex}.
- * @return {@code this + addend}.
- * @see #add(FieldComplex)
- */
- public FieldComplex<T> add(T addend) {
- if (isNaN || addend.isNaN()) {
- return getNaN(getPartsField());
- }
- return createComplex(real.add(addend), imaginary);
- }
- /**
- * Returns a {@code Complex} whose value is {@code (this + addend)},
- * with {@code addend} interpreted as a real number.
- *
- * @param addend Value to be added to this {@code Complex}.
- * @return {@code this + addend}.
- * @see #add(FieldComplex)
- */
- @Override
- public FieldComplex<T> add(double addend) {
- if (isNaN || Double.isNaN(addend)) {
- return getNaN(getPartsField());
- }
- return createComplex(real.add(addend), imaginary);
- }
- /**
- * Returns the conjugate of this complex number.
- * The conjugate of {@code a + bi} is {@code a - bi}.
- * <p>
- * {@link #getNaN(Field)} is returned if either the real or imaginary
- * part of this Complex number equals {@code Double.NaN}.
- * </p><p>
- * If the imaginary part is infinite, and the real part is not
- * {@code NaN}, the returned value has infinite imaginary part
- * of the opposite sign, e.g. the conjugate of
- * {@code 1 + POSITIVE_INFINITY i} is {@code 1 - NEGATIVE_INFINITY i}.
- * </p>
- * @return the conjugate of this Complex object.
- */
- public FieldComplex<T> conjugate() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- return createComplex(real, imaginary.negate());
- }
- /**
- * Returns a {@code Complex} whose value is
- * {@code (this / divisor)}.
- * Implements the definitional formula
- * <pre>
- * <code>
- * a + bi ac + bd + (bc - ad)i
- * ----------- = -------------------------
- * c + di c<sup>2</sup> + d<sup>2</sup>
- * </code>
- * </pre>
- * but uses
- * <a href="http://doi.acm.org/10.1145/1039813.1039814">
- * prescaling of operands</a> to limit the effects of overflows and
- * underflows in the computation.
- * <p>
- * {@code Infinite} and {@code NaN} values are handled according to the
- * following rules, applied in the order presented:
- * <ul>
- * <li>If either {@code this} or {@code divisor} has a {@code NaN} value
- * in either part, {@link #getNaN(Field)} is returned.
- * </li>
- * <li>If {@code divisor} equals {@link #getZero(Field)}, {@link #getNaN(Field)} is returned.
- * </li>
- * <li>If {@code this} and {@code divisor} are both infinite,
- * {@link #getNaN(Field)} is returned.
- * </li>
- * <li>If {@code this} is finite (i.e., has no {@code Infinite} or
- * {@code NaN} parts) and {@code divisor} is infinite (one or both parts
- * infinite), {@link #getZero(Field)} is returned.
- * </li>
- * <li>If {@code this} is infinite and {@code divisor} is finite,
- * {@code NaN} values are returned in the parts of the result if the
- * {@link java.lang.Double} rules applied to the definitional formula
- * force {@code NaN} results.
- * </li>
- * </ul>
- *
- * @param divisor Value by which this {@code Complex} is to be divided.
- * @return {@code this / divisor}.
- * @throws NullArgumentException if {@code divisor} is {@code null}.
- */
- @Override
- public FieldComplex<T> divide(FieldComplex<T> divisor)
- throws NullArgumentException {
- MathUtils.checkNotNull(divisor);
- if (isNaN || divisor.isNaN) {
- return getNaN(getPartsField());
- }
- final T c = divisor.getRealPart();
- final T d = divisor.getImaginaryPart();
- if (c.isZero() && d.isZero()) {
- return getNaN(getPartsField());
- }
- if (divisor.isInfinite() && !isInfinite()) {
- return getZero(getPartsField());
- }
- if (FastMath.abs(c).getReal() < FastMath.abs(d).getReal()) {
- T q = c.divide(d);
- T invDen = c.multiply(q).add(d).reciprocal();
- return createComplex(real.multiply(q).add(imaginary).multiply(invDen),
- imaginary.multiply(q).subtract(real).multiply(invDen));
- } else {
- T q = d.divide(c);
- T invDen = d.multiply(q).add(c).reciprocal();
- return createComplex(imaginary.multiply(q).add(real).multiply(invDen),
- imaginary.subtract(real.multiply(q)).multiply(invDen));
- }
- }
- /**
- * Returns a {@code Complex} whose value is {@code (this / divisor)},
- * with {@code divisor} interpreted as a real number.
- *
- * @param divisor Value by which this {@code Complex} is to be divided.
- * @return {@code this / divisor}.
- * @see #divide(FieldComplex)
- */
- public FieldComplex<T> divide(T divisor) {
- if (isNaN || divisor.isNaN()) {
- return getNaN(getPartsField());
- }
- if (divisor.isZero()) {
- return getNaN(getPartsField());
- }
- if (divisor.isInfinite()) {
- return !isInfinite() ? getZero(getPartsField()) : getNaN(getPartsField());
- }
- return createComplex(real.divide(divisor), imaginary.divide(divisor));
- }
- /**
- * Returns a {@code Complex} whose value is {@code (this / divisor)},
- * with {@code divisor} interpreted as a real number.
- *
- * @param divisor Value by which this {@code Complex} is to be divided.
- * @return {@code this / divisor}.
- * @see #divide(FieldComplex)
- */
- @Override
- public FieldComplex<T> divide(double divisor) {
- if (isNaN || Double.isNaN(divisor)) {
- return getNaN(getPartsField());
- }
- if (divisor == 0.0) {
- return getNaN(getPartsField());
- }
- if (Double.isInfinite(divisor)) {
- return !isInfinite() ? getZero(getPartsField()) : getNaN(getPartsField());
- }
- return createComplex(real.divide(divisor), imaginary.divide(divisor));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> reciprocal() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- if (real.isZero() && imaginary.isZero()) {
- return getInf(getPartsField());
- }
- if (isInfinite) {
- return getZero(getPartsField());
- }
- if (FastMath.abs(real).getReal() < FastMath.abs(imaginary).getReal()) {
- T q = real.divide(imaginary);
- T scale = real.multiply(q).add(imaginary).reciprocal();
- return createComplex(scale.multiply(q), scale.negate());
- } else {
- T q = imaginary.divide(real);
- T scale = imaginary.multiply(q).add(real).reciprocal();
- return createComplex(scale, scale.negate().multiply(q));
- }
- }
- /**
- * Test for equality with another object.
- * If both the real and imaginary parts of two complex numbers
- * are exactly the same, and neither is {@code Double.NaN}, the two
- * Complex objects are considered to be equal.
- * The behavior is the same as for JDK's {@link Double#equals(Object)
- * Double}:
- * <ul>
- * <li>All {@code NaN} values are considered to be equal,
- * i.e, if either (or both) real and imaginary parts of the complex
- * number are equal to {@code Double.NaN}, the complex number is equal
- * to {@code NaN}.
- * </li>
- * <li>
- * Instances constructed with different representations of zero (i.e.
- * either "0" or "-0") are <em>not</em> considered to be equal.
- * </li>
- * </ul>
- *
- * @param other Object to test for equality with this instance.
- * @return {@code true} if the objects are equal, {@code false} if object
- * is {@code null}, not an instance of {@code Complex}, or not equal to
- * this instance.
- */
- @Override
- public boolean equals(Object other) {
- if (this == other) {
- return true;
- }
- if (other instanceof FieldComplex){
- @SuppressWarnings("unchecked")
- FieldComplex<T> c = (FieldComplex<T>) other;
- if (c.isNaN) {
- return isNaN;
- } else {
- return real.equals(c.real) && imaginary.equals(c.imaginary);
- }
- }
- return false;
- }
- /**
- * Test for the floating-point equality between Complex objects.
- * It returns {@code true} if both arguments are equal or within the
- * range of allowed error (inclusive).
- *
- * @param x First value (cannot be {@code null}).
- * @param y Second value (cannot be {@code null}).
- * @param maxUlps {@code (maxUlps - 1)} is the number of floating point
- * values between the real (resp. imaginary) parts of {@code x} and
- * {@code y}.
- * @param <T> the type of the field elements
- * @return {@code true} if there are fewer than {@code maxUlps} floating
- * point values between the real (resp. imaginary) parts of {@code x}
- * and {@code y}.
- *
- * @see Precision#equals(double,double,int)
- */
- public static <T extends CalculusFieldElement<T>>boolean equals(FieldComplex<T> x, FieldComplex<T> y, int maxUlps) {
- return Precision.equals(x.real.getReal(), y.real.getReal(), maxUlps) &&
- Precision.equals(x.imaginary.getReal(), y.imaginary.getReal(), maxUlps);
- }
- /**
- * Returns {@code true} iff the values are equal as defined by
- * {@link #equals(FieldComplex,FieldComplex,int) equals(x, y, 1)}.
- *
- * @param x First value (cannot be {@code null}).
- * @param y Second value (cannot be {@code null}).
- * @param <T> the type of the field elements
- * @return {@code true} if the values are equal.
- */
- public static <T extends CalculusFieldElement<T>>boolean equals(FieldComplex<T> x, FieldComplex<T> y) {
- return equals(x, y, 1);
- }
- /**
- * Returns {@code true} if, both for the real part and for the imaginary
- * part, there is no T value strictly between the arguments or the
- * difference between them is within the range of allowed error
- * (inclusive). Returns {@code false} if either of the arguments is NaN.
- *
- * @param x First value (cannot be {@code null}).
- * @param y Second value (cannot be {@code null}).
- * @param eps Amount of allowed absolute error.
- * @param <T> the type of the field elements
- * @return {@code true} if the values are two adjacent floating point
- * numbers or they are within range of each other.
- *
- * @see Precision#equals(double,double,double)
- */
- public static <T extends CalculusFieldElement<T>>boolean equals(FieldComplex<T> x, FieldComplex<T> y,
- double eps) {
- return Precision.equals(x.real.getReal(), y.real.getReal(), eps) &&
- Precision.equals(x.imaginary.getReal(), y.imaginary.getReal(), eps);
- }
- /**
- * Returns {@code true} if, both for the real part and for the imaginary
- * part, there is no T value strictly between the arguments or the
- * relative difference between them is smaller or equal to the given
- * tolerance. Returns {@code false} if either of the arguments is NaN.
- *
- * @param x First value (cannot be {@code null}).
- * @param y Second value (cannot be {@code null}).
- * @param eps Amount of allowed relative error.
- * @param <T> the type of the field elements
- * @return {@code true} if the values are two adjacent floating point
- * numbers or they are within range of each other.
- *
- * @see Precision#equalsWithRelativeTolerance(double,double,double)
- */
- public static <T extends CalculusFieldElement<T>>boolean equalsWithRelativeTolerance(FieldComplex<T> x,
- FieldComplex<T> y,
- double eps) {
- return Precision.equalsWithRelativeTolerance(x.real.getReal(), y.real.getReal(), eps) &&
- Precision.equalsWithRelativeTolerance(x.imaginary.getReal(), y.imaginary.getReal(), eps);
- }
- /**
- * Get a hashCode for the complex number.
- * Any {@code Double.NaN} value in real or imaginary part produces
- * the same hash code {@code 7}.
- *
- * @return a hash code value for this object.
- */
- @Override
- public int hashCode() {
- if (isNaN) {
- return 7;
- }
- return 37 * (17 * imaginary.hashCode() + real.hashCode());
- }
- /** {@inheritDoc}
- * <p>
- * This implementation considers +0.0 and -0.0 to be equal for both
- * real and imaginary components.
- * </p>
- */
- @Override
- public boolean isZero() {
- return real.isZero() && imaginary.isZero();
- }
- /**
- * Access the imaginary part.
- *
- * @return the imaginary part.
- */
- public T getImaginary() {
- return imaginary;
- }
- /**
- * Access the imaginary part.
- *
- * @return the imaginary part.
- */
- public T getImaginaryPart() {
- return imaginary;
- }
- /**
- * Access the real part.
- *
- * @return the real part.
- */
- @Override
- public double getReal() {
- return real.getReal();
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> getAddendum() {
- return new FieldComplex<>(real.getAddendum(), imaginary);
- }
- /**
- * Access the real part.
- *
- * @return the real part.
- */
- public T getRealPart() {
- return real;
- }
- /**
- * Checks whether either or both parts of this complex number is
- * {@code NaN}.
- *
- * @return true if either or both parts of this complex number is
- * {@code NaN}; false otherwise.
- */
- @Override
- public boolean isNaN() {
- return isNaN;
- }
- /** Check whether the instance is real (i.e. imaginary part is zero).
- * @return true if imaginary part is zero
- */
- public boolean isReal() {
- return imaginary.isZero();
- }
- /** Check whether the instance is an integer (i.e. imaginary part is zero and real part has no fractional part).
- * @return true if imaginary part is zero and real part has no fractional part
- */
- public boolean isMathematicalInteger() {
- return isReal() && Precision.isMathematicalInteger(real.getReal());
- }
- /**
- * Checks whether either the real or imaginary part of this complex number
- * takes an infinite value (either {@code Double.POSITIVE_INFINITY} or
- * {@code Double.NEGATIVE_INFINITY}) and neither part
- * is {@code NaN}.
- *
- * @return true if one or both parts of this complex number are infinite
- * and neither part is {@code NaN}.
- */
- @Override
- public boolean isInfinite() {
- return isInfinite;
- }
- /**
- * Returns a {@code Complex} whose value is {@code this * factor}.
- * Implements preliminary checks for {@code NaN} and infinity followed by
- * the definitional formula:
- * <p>
- * {@code (a + bi)(c + di) = (ac - bd) + (ad + bc)i}
- * </p>
- * Returns {@link #getNaN(Field)} if either {@code this} or {@code factor} has one or
- * more {@code NaN} parts.
- * <p>
- * Returns {@link #getInf(Field)} if neither {@code this} nor {@code factor} has one
- * or more {@code NaN} parts and if either {@code this} or {@code factor}
- * has one or more infinite parts (same result is returned regardless of
- * the sign of the components).
- * </p><p>
- * Returns finite values in components of the result per the definitional
- * formula in all remaining cases.</p>
- *
- * @param factor value to be multiplied by this {@code Complex}.
- * @return {@code this * factor}.
- * @throws NullArgumentException if {@code factor} is {@code null}.
- */
- @Override
- public FieldComplex<T> multiply(FieldComplex<T> factor)
- throws NullArgumentException {
- MathUtils.checkNotNull(factor);
- if (isNaN || factor.isNaN) {
- return getNaN(getPartsField());
- }
- if (real.isInfinite() ||
- imaginary.isInfinite() ||
- factor.real.isInfinite() ||
- factor.imaginary.isInfinite()) {
- // we don't use isInfinite() to avoid testing for NaN again
- return getInf(getPartsField());
- }
- return createComplex(real.linearCombination(real, factor.real, imaginary.negate(), factor.imaginary),
- real.linearCombination(real, factor.imaginary, imaginary, factor.real));
- }
- /**
- * Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor}
- * interpreted as a integer number.
- *
- * @param factor value to be multiplied by this {@code Complex}.
- * @return {@code this * factor}.
- * @see #multiply(FieldComplex)
- */
- @Override
- public FieldComplex<T> multiply(final int factor) {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- if (real.isInfinite() || imaginary.isInfinite()) {
- return getInf(getPartsField());
- }
- return createComplex(real.multiply(factor), imaginary.multiply(factor));
- }
- /**
- * Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor}
- * interpreted as a real number.
- *
- * @param factor value to be multiplied by this {@code Complex}.
- * @return {@code this * factor}.
- * @see #multiply(FieldComplex)
- */
- @Override
- public FieldComplex<T> multiply(double factor) {
- if (isNaN || Double.isNaN(factor)) {
- return getNaN(getPartsField());
- }
- if (real.isInfinite() ||
- imaginary.isInfinite() ||
- Double.isInfinite(factor)) {
- // we don't use isInfinite() to avoid testing for NaN again
- return getInf(getPartsField());
- }
- return createComplex(real.multiply(factor), imaginary.multiply(factor));
- }
- /**
- * Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor}
- * interpreted as a real number.
- *
- * @param factor value to be multiplied by this {@code Complex}.
- * @return {@code this * factor}.
- * @see #multiply(FieldComplex)
- */
- public FieldComplex<T> multiply(T factor) {
- if (isNaN || factor.isNaN()) {
- return getNaN(getPartsField());
- }
- if (real.isInfinite() ||
- imaginary.isInfinite() ||
- factor.isInfinite()) {
- // we don't use isInfinite() to avoid testing for NaN again
- return getInf(getPartsField());
- }
- return createComplex(real.multiply(factor), imaginary.multiply(factor));
- }
- /** Compute this * i.
- * @return this * i
- * @since 2.0
- */
- public FieldComplex<T> multiplyPlusI() {
- return createComplex(imaginary.negate(), real);
- }
- /** Compute this *- -i.
- * @return this * i
- * @since 2.0
- */
- public FieldComplex<T> multiplyMinusI() {
- return createComplex(imaginary, real.negate());
- }
- @Override
- public FieldComplex<T> square() {
- return multiply(this);
- }
- /**
- * Returns a {@code Complex} whose value is {@code (-this)}.
- * Returns {@code NaN} if either real or imaginary
- * part of this Complex number is {@code Double.NaN}.
- *
- * @return {@code -this}.
- */
- @Override
- public FieldComplex<T> negate() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- return createComplex(real.negate(), imaginary.negate());
- }
- /**
- * Returns a {@code Complex} whose value is
- * {@code (this - subtrahend)}.
- * Uses the definitional formula
- * <p>
- * {@code (a + bi) - (c + di) = (a-c) + (b-d)i}
- * </p>
- * If either {@code this} or {@code subtrahend} has a {@code NaN]} value in either part,
- * {@link #getNaN(Field)} is returned; otherwise infinite and {@code NaN} values are
- * returned in the parts of the result according to the rules for
- * {@link java.lang.Double} arithmetic.
- *
- * @param subtrahend value to be subtracted from this {@code Complex}.
- * @return {@code this - subtrahend}.
- * @throws NullArgumentException if {@code subtrahend} is {@code null}.
- */
- @Override
- public FieldComplex<T> subtract(FieldComplex<T> subtrahend)
- throws NullArgumentException {
- MathUtils.checkNotNull(subtrahend);
- if (isNaN || subtrahend.isNaN) {
- return getNaN(getPartsField());
- }
- return createComplex(real.subtract(subtrahend.getRealPart()),
- imaginary.subtract(subtrahend.getImaginaryPart()));
- }
- /**
- * Returns a {@code Complex} whose value is
- * {@code (this - subtrahend)}.
- *
- * @param subtrahend value to be subtracted from this {@code Complex}.
- * @return {@code this - subtrahend}.
- * @see #subtract(FieldComplex)
- */
- @Override
- public FieldComplex<T> subtract(double subtrahend) {
- if (isNaN || Double.isNaN(subtrahend)) {
- return getNaN(getPartsField());
- }
- return createComplex(real.subtract(subtrahend), imaginary);
- }
- /**
- * Returns a {@code Complex} whose value is
- * {@code (this - subtrahend)}.
- *
- * @param subtrahend value to be subtracted from this {@code Complex}.
- * @return {@code this - subtrahend}.
- * @see #subtract(FieldComplex)
- */
- public FieldComplex<T> subtract(T subtrahend) {
- if (isNaN || subtrahend.isNaN()) {
- return getNaN(getPartsField());
- }
- return createComplex(real.subtract(subtrahend), imaginary);
- }
- /**
- * Compute the
- * <a href="http://mathworld.wolfram.com/InverseCosine.html" TARGET="_top">
- * inverse cosine</a> of this complex number.
- * Implements the formula:
- * <p>
- * {@code acos(z) = -i (log(z + i (sqrt(1 - z<sup>2</sup>))))}
- * </p>
- * Returns {@link #getNaN(Field)} if either real or imaginary part of the
- * input argument is {@code NaN} or infinite.
- *
- * @return the inverse cosine of this complex number.
- */
- @Override
- public FieldComplex<T> acos() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- return this.add(this.sqrt1z().multiplyPlusI()).log().multiplyMinusI();
- }
- /**
- * Compute the
- * <a href="http://mathworld.wolfram.com/InverseSine.html" TARGET="_top">
- * inverse sine</a> of this complex number.
- * Implements the formula:
- * <p>
- * {@code asin(z) = -i (log(sqrt(1 - z<sup>2</sup>) + iz))}
- * </p><p>
- * Returns {@link #getNaN(Field)} if either real or imaginary part of the
- * input argument is {@code NaN} or infinite.</p>
- *
- * @return the inverse sine of this complex number.
- */
- @Override
- public FieldComplex<T> asin() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- return sqrt1z().add(this.multiplyPlusI()).log().multiplyMinusI();
- }
- /**
- * Compute the
- * <a href="http://mathworld.wolfram.com/InverseTangent.html" TARGET="_top">
- * inverse tangent</a> of this complex number.
- * Implements the formula:
- * <p>
- * {@code atan(z) = (i/2) log((1 - iz)/(1 + iz))}
- * </p><p>
- * Returns {@link #getNaN(Field)} if either real or imaginary part of the
- * input argument is {@code NaN} or infinite.</p>
- *
- * @return the inverse tangent of this complex number
- */
- @Override
- public FieldComplex<T> atan() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- final T one = getPartsField().getOne();
- if (real.isZero()) {
- // singularity at ±i
- if (imaginary.multiply(imaginary).subtract(one).isZero()) {
- return getNaN(getPartsField());
- }
- // branch cut on imaginary axis
- final T zero = getPartsField().getZero();
- final FieldComplex<T> tmp = createComplex(one.add(imaginary).divide(one.subtract(imaginary)), zero).
- log().multiplyPlusI().multiply(0.5);
- return createComplex(FastMath.copySign(tmp.real, real), tmp.imaginary);
- } else if (imaginary.isZero()) {
- // taking care to preserve the sign of the zero imaginary part
- return createComplex(FastMath.atan(real), imaginary);
- } else {
- // regular formula
- final FieldComplex<T> n = createComplex(one.add(imaginary), real.negate());
- final FieldComplex<T> d = createComplex(one.subtract(imaginary), real);
- return n.divide(d).log().multiplyPlusI().multiply(0.5);
- }
- }
- /**
- * Compute the
- * <a href="http://mathworld.wolfram.com/Cosine.html" TARGET="_top">
- * cosine</a> of this complex number.
- * Implements the formula:
- * <p>
- * {@code cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i}
- * </p><p>
- * where the (real) functions on the right-hand side are
- * {@link FastMath#sin}, {@link FastMath#cos},
- * {@link FastMath#cosh} and {@link FastMath#sinh}.
- * </p><p>
- * Returns {@link #getNaN(Field)} if either real or imaginary part of the
- * input argument is {@code NaN}.
- * </p><p>
- * Infinite values in real or imaginary parts of the input may result in
- * infinite or NaN values returned in parts of the result.</p>
- * <pre>
- * Examples:
- * <code>
- * cos(1 ± INFINITY i) = 1 ∓ INFINITY i
- * cos(±INFINITY + i) = NaN + NaN i
- * cos(±INFINITY ± INFINITY i) = NaN + NaN i
- * </code>
- * </pre>
- *
- * @return the cosine of this complex number.
- */
- @Override
- public FieldComplex<T> cos() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- final FieldSinCos<T> scr = FastMath.sinCos(real);
- final FieldSinhCosh<T> schi = FastMath.sinhCosh(imaginary);
- return createComplex(scr.cos().multiply(schi.cosh()), scr.sin().negate().multiply(schi.sinh()));
- }
- /**
- * Compute the
- * <a href="http://mathworld.wolfram.com/HyperbolicCosine.html" TARGET="_top">
- * hyperbolic cosine</a> of this complex number.
- * Implements the formula:
- * <pre>
- * <code>
- * cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i
- * </code>
- * </pre>
- * where the (real) functions on the right-hand side are
- * {@link FastMath#sin}, {@link FastMath#cos},
- * {@link FastMath#cosh} and {@link FastMath#sinh}.
- * <p>
- * Returns {@link #getNaN(Field)} if either real or imaginary part of the
- * input argument is {@code NaN}.
- * </p>
- * Infinite values in real or imaginary parts of the input may result in
- * infinite or NaN values returned in parts of the result.
- * <pre>
- * Examples:
- * <code>
- * cosh(1 ± INFINITY i) = NaN + NaN i
- * cosh(±INFINITY + i) = INFINITY ± INFINITY i
- * cosh(±INFINITY ± INFINITY i) = NaN + NaN i
- * </code>
- * </pre>
- *
- * @return the hyperbolic cosine of this complex number.
- */
- @Override
- public FieldComplex<T> cosh() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- final FieldSinhCosh<T> schr = FastMath.sinhCosh(real);
- final FieldSinCos<T> sci = FastMath.sinCos(imaginary);
- return createComplex(schr.cosh().multiply(sci.cos()), schr.sinh().multiply(sci.sin()));
- }
- /**
- * Compute the
- * <a href="http://mathworld.wolfram.com/ExponentialFunction.html" TARGET="_top">
- * exponential function</a> of this complex number.
- * Implements the formula:
- * <pre>
- * <code>
- * exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i
- * </code>
- * </pre>
- * where the (real) functions on the right-hand side are
- * {@link FastMath#exp(CalculusFieldElement)} p}, {@link FastMath#cos(CalculusFieldElement)}, and
- * {@link FastMath#sin(CalculusFieldElement)}.
- * <p>
- * Returns {@link #getNaN(Field)} if either real or imaginary part of the
- * input argument is {@code NaN}.
- * </p>
- * Infinite values in real or imaginary parts of the input may result in
- * infinite or NaN values returned in parts of the result.
- * <pre>
- * Examples:
- * <code>
- * exp(1 ± INFINITY i) = NaN + NaN i
- * exp(INFINITY + i) = INFINITY + INFINITY i
- * exp(-INFINITY + i) = 0 + 0i
- * exp(±INFINITY ± INFINITY i) = NaN + NaN i
- * </code>
- * </pre>
- *
- * @return <code><i>e</i><sup>this</sup></code>.
- */
- @Override
- public FieldComplex<T> exp() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- final T expReal = FastMath.exp(real);
- final FieldSinCos<T> sc = FastMath.sinCos(imaginary);
- return createComplex(expReal.multiply(sc.cos()), expReal.multiply(sc.sin()));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> expm1() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- final T expm1Real = FastMath.expm1(real);
- final FieldSinCos<T> sc = FastMath.sinCos(imaginary);
- return createComplex(expm1Real.multiply(sc.cos()), expm1Real.multiply(sc.sin()));
- }
- /**
- * Compute the
- * <a href="http://mathworld.wolfram.com/NaturalLogarithm.html" TARGET="_top">
- * natural logarithm</a> of this complex number.
- * Implements the formula:
- * <pre>
- * <code>
- * log(a + bi) = ln(|a + bi|) + arg(a + bi)i
- * </code>
- * </pre>
- * where ln on the right hand side is {@link FastMath#log(CalculusFieldElement)},
- * {@code |a + bi|} is the modulus, {@link #abs}, and
- * {@code arg(a + bi) = }{@link FastMath#atan2}(b, a).
- * <p>
- * Returns {@link #getNaN(Field)} if either real or imaginary part of the
- * input argument is {@code NaN}.
- * </p>
- * Infinite (or critical) values in real or imaginary parts of the input may
- * result in infinite or NaN values returned in parts of the result.
- * <pre>
- * Examples:
- * <code>
- * log(1 ± INFINITY i) = INFINITY ± (π/2)i
- * log(INFINITY + i) = INFINITY + 0i
- * log(-INFINITY + i) = INFINITY + πi
- * log(INFINITY ± INFINITY i) = INFINITY ± (π/4)i
- * log(-INFINITY ± INFINITY i) = INFINITY ± (3π/4)i
- * log(0 + 0i) = -INFINITY + 0i
- * </code>
- * </pre>
- *
- * @return the value <code>ln this</code>, the natural logarithm
- * of {@code this}.
- */
- @Override
- public FieldComplex<T> log() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- return createComplex(FastMath.log(FastMath.hypot(real, imaginary)),
- FastMath.atan2(imaginary, real));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> log1p() {
- return add(1.0).log();
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> log10() {
- return log().divide(LOG10);
- }
- /**
- * Returns of value of this complex number raised to the power of {@code x}.
- * <p>
- * If {@code x} is a real number whose real part has an integer value, returns {@link #pow(int)},
- * if both {@code this} and {@code x} are real and {@link FastMath#pow(double, double)}
- * with the corresponding real arguments would return a finite number (neither NaN
- * nor infinite), then returns the same value converted to {@code Complex},
- * with the same special cases.
- * In all other cases real cases, implements y<sup>x</sup> = exp(x·log(y)).
- * </p>
- *
- * @param x exponent to which this {@code Complex} is to be raised.
- * @return <code> this<sup>x</sup></code>.
- * @throws NullArgumentException if x is {@code null}.
- */
- @Override
- public FieldComplex<T> pow(FieldComplex<T> x)
- throws NullArgumentException {
- MathUtils.checkNotNull(x);
- if (x.imaginary.isZero()) {
- final int nx = (int) FastMath.rint(x.real.getReal());
- if (x.real.getReal() == nx) {
- // integer power
- return pow(nx);
- } else if (this.imaginary.isZero()) {
- // check real implementation that handles a bunch of special cases
- final T realPow = FastMath.pow(this.real, x.real);
- if (realPow.isFinite()) {
- return createComplex(realPow, getPartsField().getZero());
- }
- }
- }
- // generic implementation
- return this.log().multiply(x).exp();
- }
- /**
- * Returns of value of this complex number raised to the power of {@code x}.
- * <p>
- * If {@code x} has an integer value, returns {@link #pow(int)},
- * if {@code this} is real and {@link FastMath#pow(double, double)}
- * with the corresponding real arguments would return a finite number (neither NaN
- * nor infinite), then returns the same value converted to {@code Complex},
- * with the same special cases.
- * In all other cases real cases, implements y<sup>x</sup> = exp(x·log(y)).
- * </p>
- *
- * @param x exponent to which this {@code Complex} is to be raised.
- * @return <code> this<sup>x</sup></code>.
- */
- public FieldComplex<T> pow(T x) {
- final int nx = (int) FastMath.rint(x.getReal());
- if (x.getReal() == nx) {
- // integer power
- return pow(nx);
- } else if (this.imaginary.isZero()) {
- // check real implementation that handles a bunch of special cases
- final T realPow = FastMath.pow(this.real, x);
- if (realPow.isFinite()) {
- return createComplex(realPow, getPartsField().getZero());
- }
- }
- // generic implementation
- return this.log().multiply(x).exp();
- }
- /**
- * Returns of value of this complex number raised to the power of {@code x}.
- * <p>
- * If {@code x} has an integer value, returns {@link #pow(int)},
- * if {@code this} is real and {@link FastMath#pow(double, double)}
- * with the corresponding real arguments would return a finite number (neither NaN
- * nor infinite), then returns the same value converted to {@code Complex},
- * with the same special cases.
- * In all other cases real cases, implements y<sup>x</sup> = exp(x·log(y)).
- * </p>
- *
- * @param x exponent to which this {@code Complex} is to be raised.
- * @return <code> this<sup>x</sup></code>.
- */
- @Override
- public FieldComplex<T> pow(double x) {
- final int nx = (int) FastMath.rint(x);
- if (x == nx) {
- // integer power
- return pow(nx);
- } else if (this.imaginary.isZero()) {
- // check real implementation that handles a bunch of special cases
- final T realPow = FastMath.pow(this.real, x);
- if (realPow.isFinite()) {
- return createComplex(realPow, getPartsField().getZero());
- }
- }
- // generic implementation
- return this.log().multiply(x).exp();
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> pow(final int n) {
- FieldComplex<T> result = getField().getOne();
- final boolean invert;
- int p = n;
- if (p < 0) {
- invert = true;
- p = -p;
- } else {
- invert = false;
- }
- // Exponentiate by successive squaring
- FieldComplex<T> square = this;
- while (p > 0) {
- if ((p & 0x1) > 0) {
- result = result.multiply(square);
- }
- square = square.multiply(square);
- p = p >> 1;
- }
- return invert ? result.reciprocal() : result;
- }
- /**
- * Compute the
- * <a href="http://mathworld.wolfram.com/Sine.html" TARGET="_top">
- * sine</a>
- * of this complex number.
- * Implements the formula:
- * <pre>
- * <code>
- * sin(a + bi) = sin(a)cosh(b) + cos(a)sinh(b)i
- * </code>
- * </pre>
- * where the (real) functions on the right-hand side are
- * {@link FastMath#sin}, {@link FastMath#cos},
- * {@link FastMath#cosh} and {@link FastMath#sinh}.
- * <p>
- * Returns {@link #getNaN(Field)} if either real or imaginary part of the
- * input argument is {@code NaN}.
- * </p><p>
- * Infinite values in real or imaginary parts of the input may result in
- * infinite or {@code NaN} values returned in parts of the result.
- * <pre>
- * Examples:
- * <code>
- * sin(1 ± INFINITY i) = 1 ± INFINITY i
- * sin(±INFINITY + i) = NaN + NaN i
- * sin(±INFINITY ± INFINITY i) = NaN + NaN i
- * </code>
- * </pre>
- *
- * @return the sine of this complex number.
- */
- @Override
- public FieldComplex<T> sin() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- final FieldSinCos<T> scr = FastMath.sinCos(real);
- final FieldSinhCosh<T> schi = FastMath.sinhCosh(imaginary);
- return createComplex(scr.sin().multiply(schi.cosh()), scr.cos().multiply(schi.sinh()));
- }
- /** {@inheritDoc}
- */
- @Override
- public FieldSinCos<FieldComplex<T>> sinCos() {
- if (isNaN) {
- return new FieldSinCos<>(getNaN(getPartsField()), getNaN(getPartsField()));
- }
- final FieldSinCos<T> scr = FastMath.sinCos(real);
- final FieldSinhCosh<T> schi = FastMath.sinhCosh(imaginary);
- return new FieldSinCos<>(createComplex(scr.sin().multiply(schi.cosh()), scr.cos().multiply(schi.sinh())),
- createComplex(scr.cos().multiply(schi.cosh()), scr.sin().negate().multiply(schi.sinh())));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> atan2(FieldComplex<T> x) {
- // compute r = sqrt(x^2+y^2)
- final FieldComplex<T> r = x.square().add(multiply(this)).sqrt();
- if (x.real.getReal() >= 0) {
- // compute atan2(y, x) = 2 atan(y / (r + x))
- return divide(r.add(x)).atan().multiply(2);
- } else {
- // compute atan2(y, x) = +/- pi - 2 atan(y / (r - x))
- return divide(r.subtract(x)).atan().multiply(-2).add(x.real.getPi());
- }
- }
- /** {@inheritDoc}
- * <p>
- * Branch cuts are on the real axis, below +1.
- * </p>
- */
- @Override
- public FieldComplex<T> acosh() {
- final FieldComplex<T> sqrtPlus = add(1).sqrt();
- final FieldComplex<T> sqrtMinus = subtract(1).sqrt();
- return add(sqrtPlus.multiply(sqrtMinus)).log();
- }
- /** {@inheritDoc}
- * <p>
- * Branch cuts are on the imaginary axis, above +i and below -i.
- * </p>
- */
- @Override
- public FieldComplex<T> asinh() {
- return add(multiply(this).add(1.0).sqrt()).log();
- }
- /** {@inheritDoc}
- * <p>
- * Branch cuts are on the real axis, above +1 and below -1.
- * </p>
- */
- @Override
- public FieldComplex<T> atanh() {
- final FieldComplex<T> logPlus = add(1).log();
- final FieldComplex<T> logMinus = createComplex(getPartsField().getOne().subtract(real), imaginary.negate()).log();
- return logPlus.subtract(logMinus).multiply(0.5);
- }
- /**
- * Compute the
- * <a href="http://mathworld.wolfram.com/HyperbolicSine.html" TARGET="_top">
- * hyperbolic sine</a> of this complex number.
- * Implements the formula:
- * <pre>
- * <code>
- * sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i
- * </code>
- * </pre>
- * where the (real) functions on the right-hand side are
- * {@link FastMath#sin}, {@link FastMath#cos},
- * {@link FastMath#cosh} and {@link FastMath#sinh}.
- * <p>
- * Returns {@link #getNaN(Field)} if either real or imaginary part of the
- * input argument is {@code NaN}.
- * </p><p>
- * Infinite values in real or imaginary parts of the input may result in
- * infinite or NaN values returned in parts of the result.
- * <pre>
- * Examples:
- * <code>
- * sinh(1 ± INFINITY i) = NaN + NaN i
- * sinh(±INFINITY + i) = ± INFINITY + INFINITY i
- * sinh(±INFINITY ± INFINITY i) = NaN + NaN i
- * </code>
- * </pre>
- *
- * @return the hyperbolic sine of {@code this}.
- */
- @Override
- public FieldComplex<T> sinh() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- final FieldSinhCosh<T> schr = FastMath.sinhCosh(real);
- final FieldSinCos<T> sci = FastMath.sinCos(imaginary);
- return createComplex(schr.sinh().multiply(sci.cos()), schr.cosh().multiply(sci.sin()));
- }
- /** {@inheritDoc}
- */
- @Override
- public FieldSinhCosh<FieldComplex<T>> sinhCosh() {
- if (isNaN) {
- return new FieldSinhCosh<>(getNaN(getPartsField()), getNaN(getPartsField()));
- }
- final FieldSinhCosh<T> schr = FastMath.sinhCosh(real);
- final FieldSinCos<T> sci = FastMath.sinCos(imaginary);
- return new FieldSinhCosh<>(createComplex(schr.sinh().multiply(sci.cos()), schr.cosh().multiply(sci.sin())),
- createComplex(schr.cosh().multiply(sci.cos()), schr.sinh().multiply(sci.sin())));
- }
- /**
- * Compute the
- * <a href="http://mathworld.wolfram.com/SquareRoot.html" TARGET="_top">
- * square root</a> of this complex number.
- * Implements the following algorithm to compute {@code sqrt(a + bi)}:
- * <ol><li>Let {@code t = sqrt((|a| + |a + bi|) / 2)}</li>
- * <li><pre>if {@code a ≥ 0} return {@code t + (b/2t)i}
- * else return {@code |b|/2t + sign(b)t i }</pre></li>
- * </ol>
- * where <ul>
- * <li>{@code |a| = }{@link FastMath#abs(CalculusFieldElement) abs(a)}</li>
- * <li>{@code |a + bi| = }{@link FastMath#hypot(CalculusFieldElement, CalculusFieldElement) hypot(a, b)}</li>
- * <li>{@code sign(b) = }{@link FastMath#copySign(CalculusFieldElement, CalculusFieldElement) copySign(1, b)}
- * </ul>
- * The real part is therefore always nonnegative.
- * <p>
- * Returns {@link #getNaN(Field) NaN} if either real or imaginary part of the
- * input argument is {@code NaN}.
- * </p>
- * <p>
- * Infinite values in real or imaginary parts of the input may result in
- * infinite or NaN values returned in parts of the result.
- * </p>
- * <pre>
- * Examples:
- * <code>
- * sqrt(1 ± ∞ i) = ∞ + NaN i
- * sqrt(∞ + i) = ∞ + 0i
- * sqrt(-∞ + i) = 0 + ∞ i
- * sqrt(∞ ± ∞ i) = ∞ + NaN i
- * sqrt(-∞ ± ∞ i) = NaN ± ∞ i
- * </code>
- * </pre>
- *
- * @return the square root of {@code this} with nonnegative real part.
- */
- @Override
- public FieldComplex<T> sqrt() {
- if (isNaN) {
- return getNaN(getPartsField());
- }
- if (isZero()) {
- return getZero(getPartsField());
- }
- T t = FastMath.sqrt((FastMath.abs(real).add(FastMath.hypot(real, imaginary))).multiply(0.5));
- if (real.getReal() >= 0.0) {
- return createComplex(t, imaginary.divide(t.multiply(2)));
- } else {
- return createComplex(FastMath.abs(imaginary).divide(t.multiply(2)),
- FastMath.copySign(t, imaginary));
- }
- }
- /**
- * Compute the
- * <a href="http://mathworld.wolfram.com/SquareRoot.html" TARGET="_top">
- * square root</a> of <code>1 - this<sup>2</sup></code> for this complex
- * number.
- * Computes the result directly as
- * {@code sqrt(ONE.subtract(z.square()))}.
- * <p>
- * Returns {@link #getNaN(Field)} if either real or imaginary part of the
- * input argument is {@code NaN}.
- * </p>
- * Infinite values in real or imaginary parts of the input may result in
- * infinite or NaN values returned in parts of the result.
- *
- * @return the square root of <code>1 - this<sup>2</sup></code>.
- */
- public FieldComplex<T> sqrt1z() {
- final FieldComplex<T> t2 = this.square();
- return createComplex(getPartsField().getOne().subtract(t2.real), t2.imaginary.negate()).sqrt();
- }
- /** {@inheritDoc}
- * <p>
- * This implementation compute the principal cube root by using a branch cut along real negative axis.
- * </p>
- */
- @Override
- public FieldComplex<T> cbrt() {
- final T magnitude = FastMath.cbrt(abs().getRealPart());
- final FieldSinCos<T> sc = FastMath.sinCos(getArgument().divide(3));
- return createComplex(magnitude.multiply(sc.cos()), magnitude.multiply(sc.sin()));
- }
- /** {@inheritDoc}
- * <p>
- * This implementation compute the principal n<sup>th</sup> root by using a branch cut along real negative axis.
- * </p>
- */
- @Override
- public FieldComplex<T> rootN(int n) {
- final T magnitude = FastMath.pow(abs().getRealPart(), 1.0 / n);
- final FieldSinCos<T> sc = FastMath.sinCos(getArgument().divide(n));
- return createComplex(magnitude.multiply(sc.cos()), magnitude.multiply(sc.sin()));
- }
- /**
- * Compute the
- * <a href="http://mathworld.wolfram.com/Tangent.html" TARGET="_top">
- * tangent</a> of this complex number.
- * Implements the formula:
- * <pre>
- * <code>
- * tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i
- * </code>
- * </pre>
- * where the (real) functions on the right-hand side are
- * {@link FastMath#sin}, {@link FastMath#cos}, {@link FastMath#cosh} and
- * {@link FastMath#sinh}.
- * <p>
- * Returns {@link #getNaN(Field)} if either real or imaginary part of the
- * input argument is {@code NaN}.
- * </p>
- * Infinite (or critical) values in real or imaginary parts of the input may
- * result in infinite or NaN values returned in parts of the result.
- * <pre>
- * Examples:
- * <code>
- * tan(a ± INFINITY i) = 0 ± i
- * tan(±INFINITY + bi) = NaN + NaN i
- * tan(±INFINITY ± INFINITY i) = NaN + NaN i
- * tan(±π/2 + 0 i) = ±INFINITY + NaN i
- * </code>
- * </pre>
- *
- * @return the tangent of {@code this}.
- */
- @Override
- public FieldComplex<T> tan() {
- if (isNaN || real.isInfinite()) {
- return getNaN(getPartsField());
- }
- if (imaginary.getReal() > 20.0) {
- return getI(getPartsField());
- }
- if (imaginary.getReal() < -20.0) {
- return getMinusI(getPartsField());
- }
- final FieldSinCos<T> sc2r = FastMath.sinCos(real.multiply(2));
- T imaginary2 = imaginary.multiply(2);
- T d = sc2r.cos().add(FastMath.cosh(imaginary2));
- return createComplex(sc2r.sin().divide(d), FastMath.sinh(imaginary2).divide(d));
- }
- /**
- * Compute the
- * <a href="http://mathworld.wolfram.com/HyperbolicTangent.html" TARGET="_top">
- * hyperbolic tangent</a> of this complex number.
- * Implements the formula:
- * <pre>
- * <code>
- * tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i
- * </code>
- * </pre>
- * where the (real) functions on the right-hand side are
- * {@link FastMath#sin}, {@link FastMath#cos}, {@link FastMath#cosh} and
- * {@link FastMath#sinh}.
- * <p>
- * Returns {@link #getNaN(Field)} if either real or imaginary part of the
- * input argument is {@code NaN}.
- * </p>
- * Infinite values in real or imaginary parts of the input may result in
- * infinite or NaN values returned in parts of the result.
- * <pre>
- * Examples:
- * <code>
- * tanh(a ± INFINITY i) = NaN + NaN i
- * tanh(±INFINITY + bi) = ±1 + 0 i
- * tanh(±INFINITY ± INFINITY i) = NaN + NaN i
- * tanh(0 + (π/2)i) = NaN + INFINITY i
- * </code>
- * </pre>
- *
- * @return the hyperbolic tangent of {@code this}.
- */
- @Override
- public FieldComplex<T> tanh() {
- if (isNaN || imaginary.isInfinite()) {
- return getNaN(getPartsField());
- }
- if (real.getReal() > 20.0) {
- return getOne(getPartsField());
- }
- if (real.getReal() < -20.0) {
- return getMinusOne(getPartsField());
- }
- T real2 = real.multiply(2);
- final FieldSinCos<T> sc2i = FastMath.sinCos(imaginary.multiply(2));
- T d = FastMath.cosh(real2).add(sc2i.cos());
- return createComplex(FastMath.sinh(real2).divide(d), sc2i.sin().divide(d));
- }
- /**
- * Compute the argument of this complex number.
- * The argument is the angle phi between the positive real axis and
- * the point representing this number in the complex plane.
- * The value returned is between -PI (not inclusive)
- * and PI (inclusive), with negative values returned for numbers with
- * negative imaginary parts.
- * <p>
- * If either real or imaginary part (or both) is NaN, NaN is returned.
- * Infinite parts are handled as {@code Math.atan2} handles them,
- * essentially treating finite parts as zero in the presence of an
- * infinite coordinate and returning a multiple of pi/4 depending on
- * the signs of the infinite parts.
- * See the javadoc for {@code Math.atan2} for full details.
- *
- * @return the argument of {@code this}.
- */
- public T getArgument() {
- return FastMath.atan2(getImaginaryPart(), getRealPart());
- }
- /**
- * Computes the n-th roots of this complex number.
- * The nth roots are defined by the formula:
- * <pre>
- * <code>
- * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n))
- * </code>
- * </pre>
- * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi}
- * are respectively the {@link #abs() modulus} and
- * {@link #getArgument() argument} of this complex number.
- * <p>
- * If one or both parts of this complex number is NaN, a list with just
- * one element, {@link #getNaN(Field)} is returned.
- * if neither part is NaN, but at least one part is infinite, the result
- * is a one-element list containing {@link #getInf(Field)}.
- *
- * @param n Degree of root.
- * @return a List of all {@code n}-th roots of {@code this}.
- * @throws MathIllegalArgumentException if {@code n <= 0}.
- */
- public List<FieldComplex<T>> nthRoot(int n) throws MathIllegalArgumentException {
- if (n <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N,
- n);
- }
- final List<FieldComplex<T>> result = new ArrayList<>();
- if (isNaN) {
- result.add(getNaN(getPartsField()));
- return result;
- }
- if (isInfinite()) {
- result.add(getInf(getPartsField()));
- return result;
- }
- // nth root of abs -- faster / more accurate to use a solver here?
- final T nthRootOfAbs = FastMath.pow(FastMath.hypot(real, imaginary), 1.0 / n);
- // Compute nth roots of complex number with k = 0, 1, ... n-1
- final T nthPhi = getArgument().divide(n);
- final double slice = 2 * FastMath.PI / n;
- T innerPart = nthPhi;
- for (int k = 0; k < n ; k++) {
- // inner part
- final FieldSinCos<T> scInner = FastMath.sinCos(innerPart);
- final T realPart = nthRootOfAbs.multiply(scInner.cos());
- final T imaginaryPart = nthRootOfAbs.multiply(scInner.sin());
- result.add(createComplex(realPart, imaginaryPart));
- innerPart = innerPart.add(slice);
- }
- return result;
- }
- /**
- * Create a complex number given the real and imaginary parts.
- *
- * @param realPart Real part.
- * @param imaginaryPart Imaginary part.
- * @return a new complex number instance.
- *
- * @see #valueOf(CalculusFieldElement, CalculusFieldElement)
- */
- protected FieldComplex<T> createComplex(final T realPart, final T imaginaryPart) {
- return new FieldComplex<>(realPart, imaginaryPart);
- }
- /**
- * Create a complex number given the real and imaginary parts.
- *
- * @param realPart Real part.
- * @param imaginaryPart Imaginary part.
- * @param <T> the type of the field elements
- * @return a Complex instance.
- */
- public static <T extends CalculusFieldElement<T>> FieldComplex<T>
- valueOf(T realPart, T imaginaryPart) {
- if (realPart.isNaN() || imaginaryPart.isNaN()) {
- return getNaN(realPart.getField());
- }
- return new FieldComplex<>(realPart, imaginaryPart);
- }
- /**
- * Create a complex number given only the real part.
- *
- * @param realPart Real part.
- * @param <T> the type of the field elements
- * @return a Complex instance.
- */
- public static <T extends CalculusFieldElement<T>> FieldComplex<T>
- valueOf(T realPart) {
- if (realPart.isNaN()) {
- return getNaN(realPart.getField());
- }
- return new FieldComplex<>(realPart);
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> newInstance(double realPart) {
- return valueOf(getPartsField().getZero().newInstance(realPart));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplexField<T> getField() {
- return FieldComplexField.getField(getPartsField());
- }
- /** Get the {@link Field} the real and imaginary parts belong to.
- * @return {@link Field} the real and imaginary parts belong to
- */
- public Field<T> getPartsField() {
- return real.getField();
- }
- /** {@inheritDoc} */
- @Override
- public String toString() {
- return "(" + real + ", " + imaginary + ")";
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> scalb(int n) {
- return createComplex(FastMath.scalb(real, n), FastMath.scalb(imaginary, n));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> ulp() {
- return createComplex(FastMath.ulp(real), FastMath.ulp(imaginary));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> hypot(FieldComplex<T> y) {
- if (isInfinite() || y.isInfinite()) {
- return getInf(getPartsField());
- } else if (isNaN() || y.isNaN()) {
- return getNaN(getPartsField());
- } else {
- return square().add(y.square()).sqrt();
- }
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> linearCombination(final FieldComplex<T>[] a, final FieldComplex<T>[] b)
- throws MathIllegalArgumentException {
- final int n = 2 * a.length;
- final T[] realA = MathArrays.buildArray(getPartsField(), n);
- final T[] realB = MathArrays.buildArray(getPartsField(), n);
- final T[] imaginaryA = MathArrays.buildArray(getPartsField(), n);
- final T[] imaginaryB = MathArrays.buildArray(getPartsField(), n);
- for (int i = 0; i < a.length; ++i) {
- final FieldComplex<T> ai = a[i];
- final FieldComplex<T> bi = b[i];
- realA[2 * i ] = ai.real;
- realA[2 * i + 1] = ai.imaginary.negate();
- realB[2 * i ] = bi.real;
- realB[2 * i + 1] = bi.imaginary;
- imaginaryA[2 * i ] = ai.real;
- imaginaryA[2 * i + 1] = ai.imaginary;
- imaginaryB[2 * i ] = bi.imaginary;
- imaginaryB[2 * i + 1] = bi.real;
- }
- return createComplex(real.linearCombination(realA, realB),
- real.linearCombination(imaginaryA, imaginaryB));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> linearCombination(final double[] a, final FieldComplex<T>[] b)
- throws MathIllegalArgumentException {
- final int n = a.length;
- final T[] realB = MathArrays.buildArray(getPartsField(), n);
- final T[] imaginaryB = MathArrays.buildArray(getPartsField(), n);
- for (int i = 0; i < a.length; ++i) {
- final FieldComplex<T> bi = b[i];
- realB[i] = bi.real;
- imaginaryB[i] = bi.imaginary;
- }
- return createComplex(real.linearCombination(a, realB),
- real.linearCombination(a, imaginaryB));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> linearCombination(final FieldComplex<T> a1, final FieldComplex<T> b1, final FieldComplex<T> a2, final FieldComplex<T> b2) {
- return createComplex(real.linearCombination(a1.real, b1.real,
- a1.imaginary.negate(), b1.imaginary,
- a2.real, b2.real,
- a2.imaginary.negate(), b2.imaginary),
- real.linearCombination(a1.real, b1.imaginary,
- a1.imaginary, b1.real,
- a2.real, b2.imaginary,
- a2.imaginary, b2.real));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> linearCombination(final double a1, final FieldComplex<T> b1, final double a2, final FieldComplex<T> b2) {
- return createComplex(real.linearCombination(a1, b1.real,
- a2, b2.real),
- real.linearCombination(a1, b1.imaginary,
- a2, b2.imaginary));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> linearCombination(final FieldComplex<T> a1, final FieldComplex<T> b1,
- final FieldComplex<T> a2, final FieldComplex<T> b2,
- final FieldComplex<T> a3, final FieldComplex<T> b3) {
- FieldComplex<T>[] a = MathArrays.buildArray(getField(), 3);
- a[0] = a1;
- a[1] = a2;
- a[2] = a3;
- FieldComplex<T>[] b = MathArrays.buildArray(getField(), 3);
- b[0] = b1;
- b[1] = b2;
- b[2] = b3;
- return linearCombination(a, b);
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> linearCombination(final double a1, final FieldComplex<T> b1,
- final double a2, final FieldComplex<T> b2,
- final double a3, final FieldComplex<T> b3) {
- FieldComplex<T>[] b = MathArrays.buildArray(getField(), 3);
- b[0] = b1;
- b[1] = b2;
- b[2] = b3;
- return linearCombination(new double[] { a1, a2, a3 }, b);
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> linearCombination(final FieldComplex<T> a1, final FieldComplex<T> b1,
- final FieldComplex<T> a2, final FieldComplex<T> b2,
- final FieldComplex<T> a3, final FieldComplex<T> b3,
- final FieldComplex<T> a4, final FieldComplex<T> b4) {
- FieldComplex<T>[] a = MathArrays.buildArray(getField(), 4);
- a[0] = a1;
- a[1] = a2;
- a[2] = a3;
- a[3] = a4;
- FieldComplex<T>[] b = MathArrays.buildArray(getField(), 4);
- b[0] = b1;
- b[1] = b2;
- b[2] = b3;
- b[3] = b4;
- return linearCombination(a, b);
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> linearCombination(final double a1, final FieldComplex<T> b1,
- final double a2, final FieldComplex<T> b2,
- final double a3, final FieldComplex<T> b3,
- final double a4, final FieldComplex<T> b4) {
- FieldComplex<T>[] b = MathArrays.buildArray(getField(), 4);
- b[0] = b1;
- b[1] = b2;
- b[2] = b3;
- b[3] = b4;
- return linearCombination(new double[] { a1, a2, a3, a4 }, b);
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> ceil() {
- return createComplex(FastMath.ceil(getRealPart()), FastMath.ceil(getImaginaryPart()));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> floor() {
- return createComplex(FastMath.floor(getRealPart()), FastMath.floor(getImaginaryPart()));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> rint() {
- return createComplex(FastMath.rint(getRealPart()), FastMath.rint(getImaginaryPart()));
- }
- /** {@inheritDoc}
- * <p>
- * for complex numbers, the integer n corresponding to {@code this.subtract(remainder(a)).divide(a)}
- * is a <a href="https://en.wikipedia.org/wiki/Gaussian_integer">Wikipedia - Gaussian integer</a>.
- * </p>
- */
- @Override
- public FieldComplex<T> remainder(final double a) {
- return createComplex(FastMath.IEEEremainder(getRealPart(), a), FastMath.IEEEremainder(getImaginaryPart(), a));
- }
- /** {@inheritDoc}
- * <p>
- * for complex numbers, the integer n corresponding to {@code this.subtract(remainder(a)).divide(a)}
- * is a <a href="https://en.wikipedia.org/wiki/Gaussian_integer">Wikipedia - Gaussian integer</a>.
- * </p>
- */
- @Override
- public FieldComplex<T> remainder(final FieldComplex<T> a) {
- final FieldComplex<T> complexQuotient = divide(a);
- final T qRInt = FastMath.rint(complexQuotient.real);
- final T qIInt = FastMath.rint(complexQuotient.imaginary);
- return createComplex(real.subtract(qRInt.multiply(a.real)).add(qIInt.multiply(a.imaginary)),
- imaginary.subtract(qRInt.multiply(a.imaginary)).subtract(qIInt.multiply(a.real)));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> sign() {
- if (isNaN() || isZero()) {
- return this;
- } else {
- return this.divide(FastMath.hypot(real, imaginary));
- }
- }
- /** {@inheritDoc}
- * <p>
- * The signs of real and imaginary parts are copied independently.
- * </p>
- */
- @Override
- public FieldComplex<T> copySign(final FieldComplex<T> z) {
- return createComplex(FastMath.copySign(getRealPart(), z.getRealPart()),
- FastMath.copySign(getImaginaryPart(), z.getImaginaryPart()));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> copySign(double r) {
- return createComplex(FastMath.copySign(getRealPart(), r), FastMath.copySign(getImaginaryPart(), r));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> toDegrees() {
- return createComplex(FastMath.toDegrees(getRealPart()), FastMath.toDegrees(getImaginaryPart()));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> toRadians() {
- return createComplex(FastMath.toRadians(getRealPart()), FastMath.toRadians(getImaginaryPart()));
- }
- /** {@inheritDoc} */
- @Override
- public FieldComplex<T> getPi() {
- return getPi(getPartsField());
- }
- }