RiddersSolver.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.solvers;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.util.FastMath;
- /**
- * Implements the <a href="http://mathworld.wolfram.com/RiddersMethod.html">
- * Ridders' Method</a> for root finding of real univariate functions. For
- * reference, see C. Ridders, <i>A new algorithm for computing a single root
- * of a real continuous function </i>, IEEE Transactions on Circuits and
- * Systems, 26 (1979), 979 - 980.
- * <p>
- * The function should be continuous but not necessarily smooth.</p>
- *
- */
- public class RiddersSolver extends AbstractUnivariateSolver {
- /** Default absolute accuracy. */
- private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
- /**
- * Construct a solver with default accuracy (1e-6).
- */
- public RiddersSolver() {
- this(DEFAULT_ABSOLUTE_ACCURACY);
- }
- /**
- * Construct a solver.
- *
- * @param absoluteAccuracy Absolute accuracy.
- */
- public RiddersSolver(double absoluteAccuracy) {
- super(absoluteAccuracy);
- }
- /**
- * Construct a solver.
- *
- * @param relativeAccuracy Relative accuracy.
- * @param absoluteAccuracy Absolute accuracy.
- */
- public RiddersSolver(double relativeAccuracy,
- double absoluteAccuracy) {
- super(relativeAccuracy, absoluteAccuracy);
- }
- /**
- * {@inheritDoc}
- */
- @Override
- protected double doSolve()
- throws MathIllegalArgumentException, MathIllegalStateException {
- double min = getMin();
- double max = getMax();
- // [x1, x2] is the bracketing interval in each iteration
- // x3 is the midpoint of [x1, x2]
- // x is the new root approximation and an endpoint of the new interval
- double x1 = min;
- double y1 = computeObjectiveValue(x1);
- double x2 = max;
- double y2 = computeObjectiveValue(x2);
- // check for zeros before verifying bracketing
- if (y1 == 0) {
- return min;
- }
- if (y2 == 0) {
- return max;
- }
- verifyBracketing(min, max);
- final double absoluteAccuracy = getAbsoluteAccuracy();
- final double functionValueAccuracy = getFunctionValueAccuracy();
- final double relativeAccuracy = getRelativeAccuracy();
- double oldx = Double.POSITIVE_INFINITY;
- while (true) {
- // calculate the new root approximation
- final double x3 = 0.5 * (x1 + x2);
- final double y3 = computeObjectiveValue(x3);
- if (FastMath.abs(y3) <= functionValueAccuracy) {
- return x3;
- }
- final double delta = 1 - (y1 * y2) / (y3 * y3); // delta > 1 due to bracketing
- final double correction = (FastMath.signum(y2) * FastMath.signum(y3)) *
- (x3 - x1) / FastMath.sqrt(delta);
- final double x = x3 - correction; // correction != 0
- final double y = computeObjectiveValue(x);
- // check for convergence
- final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy);
- if (FastMath.abs(x - oldx) <= tolerance) {
- return x;
- }
- if (FastMath.abs(y) <= functionValueAccuracy) {
- return x;
- }
- // prepare the new interval for next iteration
- // Ridders' method guarantees x1 < x < x2
- if (correction > 0.0) { // x1 < x < x3
- if (FastMath.signum(y1) + FastMath.signum(y) == 0.0) {
- x2 = x;
- y2 = y;
- } else {
- x1 = x;
- x2 = x3;
- y1 = y;
- y2 = y3;
- }
- } else { // x3 < x < x2
- if (FastMath.signum(y2) + FastMath.signum(y) == 0.0) {
- x1 = x;
- y1 = y;
- } else {
- x1 = x3;
- x2 = x;
- y1 = y3;
- y2 = y;
- }
- }
- oldx = x;
- }
- }
- }