MullerSolver2.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.solvers;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.util.FastMath;
- /**
- * This class implements the <a href="http://mathworld.wolfram.com/MullersMethod.html">
- * Muller's Method</a> for root finding of real univariate functions. For
- * reference, see <b>Elementary Numerical Analysis</b>, ISBN 0070124477,
- * chapter 3.
- * <p>
- * Muller's method applies to both real and complex functions, but here we
- * restrict ourselves to real functions.
- * This class differs from {@link MullerSolver} in the way it avoids complex
- * operations.</p><p>
- * Except for the initial [min, max], it does not require bracketing
- * condition, e.g. f(x0), f(x1), f(x2) can have the same sign. If a complex
- * number arises in the computation, we simply use its modulus as a real
- * approximation.</p>
- * <p>
- * Because the interval may not be bracketing, the bisection alternative is
- * not applicable here. However in practice our treatment usually works
- * well, especially near real zeroes where the imaginary part of the complex
- * approximation is often negligible.</p>
- * <p>
- * The formulas here do not use divided differences directly.</p>
- *
- * @see MullerSolver
- */
- public class MullerSolver2 extends AbstractUnivariateSolver {
- /** Default absolute accuracy. */
- private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
- /**
- * Construct a solver with default accuracy (1e-6).
- */
- public MullerSolver2() {
- this(DEFAULT_ABSOLUTE_ACCURACY);
- }
- /**
- * Construct a solver.
- *
- * @param absoluteAccuracy Absolute accuracy.
- */
- public MullerSolver2(double absoluteAccuracy) {
- super(absoluteAccuracy);
- }
- /**
- * Construct a solver.
- *
- * @param relativeAccuracy Relative accuracy.
- * @param absoluteAccuracy Absolute accuracy.
- */
- public MullerSolver2(double relativeAccuracy,
- double absoluteAccuracy) {
- super(relativeAccuracy, absoluteAccuracy);
- }
- /**
- * {@inheritDoc}
- */
- @Override
- protected double doSolve()
- throws MathIllegalArgumentException, MathIllegalStateException {
- final double min = getMin();
- final double max = getMax();
- verifyInterval(min, max);
- final double relativeAccuracy = getRelativeAccuracy();
- final double absoluteAccuracy = getAbsoluteAccuracy();
- final double functionValueAccuracy = getFunctionValueAccuracy();
- // x2 is the last root approximation
- // x is the new approximation and new x2 for next round
- // x0 < x1 < x2 does not hold here
- double x0 = min;
- double y0 = computeObjectiveValue(x0);
- if (FastMath.abs(y0) < functionValueAccuracy) {
- return x0;
- }
- double x1 = max;
- double y1 = computeObjectiveValue(x1);
- if (FastMath.abs(y1) < functionValueAccuracy) {
- return x1;
- }
- if(y0 * y1 > 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NOT_BRACKETING_INTERVAL,
- x0, x1, y0, y1);
- }
- double x2 = 0.5 * (x0 + x1);
- double y2 = computeObjectiveValue(x2);
- double oldx = Double.POSITIVE_INFINITY;
- while (true) {
- // quadratic interpolation through x0, x1, x2
- final double q = (x2 - x1) / (x1 - x0);
- final double a = q * (y2 - (1 + q) * y1 + q * y0);
- final double b = (2 * q + 1) * y2 - (1 + q) * (1 + q) * y1 + q * q * y0;
- final double c = (1 + q) * y2;
- final double delta = b * b - 4 * a * c;
- double x;
- final double denominator;
- if (delta >= 0.0) {
- // choose a denominator larger in magnitude
- double dplus = b + FastMath.sqrt(delta);
- double dminus = b - FastMath.sqrt(delta);
- denominator = FastMath.abs(dplus) > FastMath.abs(dminus) ? dplus : dminus;
- } else {
- // take the modulus of (B +/- FastMath.sqrt(delta))
- denominator = FastMath.sqrt(b * b - delta);
- }
- if (denominator != 0) {
- x = x2 - 2.0 * c * (x2 - x1) / denominator;
- // perturb x if it exactly coincides with x1 or x2
- // the equality tests here are intentional
- while (x == x1 || x == x2) {
- x += absoluteAccuracy;
- }
- } else {
- // extremely rare case, get a random number to skip it
- x = min + FastMath.random() * (max - min);
- oldx = Double.POSITIVE_INFINITY;
- }
- final double y = computeObjectiveValue(x);
- // check for convergence
- final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy);
- if (FastMath.abs(x - oldx) <= tolerance ||
- FastMath.abs(y) <= functionValueAccuracy) {
- return x;
- }
- // prepare the next iteration
- x0 = x1;
- y0 = y1;
- x1 = x2;
- y1 = y2;
- x2 = x;
- y2 = y;
- oldx = x;
- }
- }
- }