MullerSolver.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.solvers;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.util.FastMath;
- /**
- * This class implements the <a href="http://mathworld.wolfram.com/MullersMethod.html">
- * Muller's Method</a> for root finding of real univariate functions. For
- * reference, see <b>Elementary Numerical Analysis</b>, ISBN 0070124477,
- * chapter 3.
- * <p>
- * Muller's method applies to both real and complex functions, but here we
- * restrict ourselves to real functions.
- * This class differs from {@link MullerSolver} in the way it avoids complex
- * operations.</p><p>
- * Muller's original method would have function evaluation at complex point.
- * Since our f(x) is real, we have to find ways to avoid that. Bracketing
- * condition is one way to go: by requiring bracketing in every iteration,
- * the newly computed approximation is guaranteed to be real.</p>
- * <p>
- * Normally Muller's method converges quadratically in the vicinity of a
- * zero, however it may be very slow in regions far away from zeros. For
- * example, f(x) = exp(x) - 1, min = -50, max = 100. In such case we use
- * bisection as a safety backup if it performs very poorly.</p>
- * <p>
- * The formulas here use divided differences directly.</p>
- *
- * @see MullerSolver2
- */
- public class MullerSolver extends AbstractUnivariateSolver {
- /** Default absolute accuracy. */
- private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
- /**
- * Construct a solver with default accuracy (1e-6).
- */
- public MullerSolver() {
- this(DEFAULT_ABSOLUTE_ACCURACY);
- }
- /**
- * Construct a solver.
- *
- * @param absoluteAccuracy Absolute accuracy.
- */
- public MullerSolver(double absoluteAccuracy) {
- super(absoluteAccuracy);
- }
- /**
- * Construct a solver.
- *
- * @param relativeAccuracy Relative accuracy.
- * @param absoluteAccuracy Absolute accuracy.
- */
- public MullerSolver(double relativeAccuracy,
- double absoluteAccuracy) {
- super(relativeAccuracy, absoluteAccuracy);
- }
- /**
- * {@inheritDoc}
- */
- @Override
- protected double doSolve()
- throws MathIllegalArgumentException, MathIllegalStateException {
- final double min = getMin();
- final double max = getMax();
- final double initial = getStartValue();
- final double functionValueAccuracy = getFunctionValueAccuracy();
- verifySequence(min, initial, max);
- // check for zeros before verifying bracketing
- final double fMin = computeObjectiveValue(min);
- if (FastMath.abs(fMin) < functionValueAccuracy) {
- return min;
- }
- final double fMax = computeObjectiveValue(max);
- if (FastMath.abs(fMax) < functionValueAccuracy) {
- return max;
- }
- final double fInitial = computeObjectiveValue(initial);
- if (FastMath.abs(fInitial) < functionValueAccuracy) {
- return initial;
- }
- verifyBracketing(min, max);
- if (isBracketing(min, initial)) {
- return solve(min, initial, fMin, fInitial);
- } else {
- return solve(initial, max, fInitial, fMax);
- }
- }
- /**
- * Find a real root in the given interval.
- *
- * @param min Lower bound for the interval.
- * @param max Upper bound for the interval.
- * @param fMin function value at the lower bound.
- * @param fMax function value at the upper bound.
- * @return the point at which the function value is zero.
- * @throws MathIllegalStateException if the allowed number of calls to
- * the function to be solved has been exhausted.
- */
- private double solve(double min, double max,
- double fMin, double fMax)
- throws MathIllegalStateException {
- final double relativeAccuracy = getRelativeAccuracy();
- final double absoluteAccuracy = getAbsoluteAccuracy();
- final double functionValueAccuracy = getFunctionValueAccuracy();
- // [x0, x2] is the bracketing interval in each iteration
- // x1 is the last approximation and an interpolation point in (x0, x2)
- // x is the new root approximation and new x1 for next round
- // d01, d12, d012 are divided differences
- double x0 = min;
- double y0 = fMin;
- double x2 = max;
- double y2 = fMax;
- double x1 = 0.5 * (x0 + x2);
- double y1 = computeObjectiveValue(x1);
- double oldx = Double.POSITIVE_INFINITY;
- while (true) {
- // Muller's method employs quadratic interpolation through
- // x0, x1, x2 and x is the zero of the interpolating parabola.
- // Due to bracketing condition, this parabola must have two
- // real roots and we choose one in [x0, x2] to be x.
- final double d01 = (y1 - y0) / (x1 - x0);
- final double d12 = (y2 - y1) / (x2 - x1);
- final double d012 = (d12 - d01) / (x2 - x0);
- final double c1 = d01 + (x1 - x0) * d012;
- final double delta = c1 * c1 - 4 * y1 * d012;
- final double xplus = x1 + (-2.0 * y1) / (c1 + FastMath.sqrt(delta));
- final double xminus = x1 + (-2.0 * y1) / (c1 - FastMath.sqrt(delta));
- // xplus and xminus are two roots of parabola and at least
- // one of them should lie in (x0, x2)
- final double x = isSequence(x0, xplus, x2) ? xplus : xminus;
- final double y = computeObjectiveValue(x);
- // check for convergence
- final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy);
- if (FastMath.abs(x - oldx) <= tolerance ||
- FastMath.abs(y) <= functionValueAccuracy) {
- return x;
- }
- // Bisect if convergence is too slow. Bisection would waste
- // our calculation of x, hopefully it won't happen often.
- // the real number equality test x == x1 is intentional and
- // completes the proximity tests above it
- boolean bisect = (x < x1 && (x1 - x0) > 0.95 * (x2 - x0)) ||
- (x > x1 && (x2 - x1) > 0.95 * (x2 - x0)) ||
- (x == x1);
- // prepare the new bracketing interval for next iteration
- if (!bisect) {
- x0 = x < x1 ? x0 : x1;
- y0 = x < x1 ? y0 : y1;
- x2 = x > x1 ? x2 : x1;
- y2 = x > x1 ? y2 : y1;
- x1 = x; y1 = y;
- oldx = x;
- } else {
- double xm = 0.5 * (x0 + x2);
- double ym = computeObjectiveValue(xm);
- if (FastMath.signum(y0) + FastMath.signum(ym) == 0.0) {
- x2 = xm; y2 = ym;
- } else {
- x0 = xm; y0 = ym;
- }
- x1 = 0.5 * (x0 + x2);
- y1 = computeObjectiveValue(x1);
- oldx = Double.POSITIVE_INFINITY;
- }
- }
- }
- }